
A Internet appendix:

The Utilization Premium

OA.1 Variable description and construction

Asset growth. Asset growth is calculated as the year-on-year annual growth rate of total
assets (Compustat Annual item AT) between years t − 1 and t. This definition of asset growth is
drawn from Cooper, Gulen, and Schill (2008).

Book-to-market (BE/ME). A firm’s book-to-market ratio is constructed by following Daniel
and Titman (2006). Book equity is defined as shareholders’ equity minus the value of preferred
stock. If available, shareholders’ equity is set equal to stockholders’ equity (Compustat Annual
item SEQ). If stockholders’ equity is missing, then common equity (Compustat Annual item CEQ)
plus the par value of preferred stock (Compustat Annual item PSTK) is used instead. If neither of
the two previous definitions of stockholders’ equity can be constructed, then shareholders’ equity is
the difference between total assets (Compustat Annual item AT) and total liabilities (Compustat
Annual item LT). For the value of preferred stock we use the redemption value (Compustat Annual
item PSTKRV), the liquidating value (Compustat Annual item PSTKL), or the carrying value
(Compustat Annual item PSTK), in that order of preference. We also add the value of deferred
taxes and investment tax credits (Compustat Annual item TXDITC) to, and subtract the value of
post retirement benefits (Compustat Annual item PRBA) from, the value of book equity if either
variable is available. Finally, the book value of equity in the fiscal year ending in calendar year
t− 1 is divided by the market value of common equity from December of year t− 1.

Capacity. The capacity estimate measures the maximum amount of output that an indus-
try can produce, assuming the sufficient availability of inputs to production and a realistic work
schedule. The FRB relies on a variety of sources to determine the capacity of each industry. The
primary source of capacity data for manufacturing industries, which make up the bulk of our sam-
ple, is currently the Quarterly Survey of Plant Capacity Utilization (QPC). For approximately 20%
industries, including a subset of manufacturers, capacity is reported in physical units obtained from
government or trade sources, such as the United States Geological Survey. Finally, for a small pro-
portion of industries for which neither of the aforementioned data sources are available, the FRB
estimates capacity based on trends through peaks in production. Gilbert, Morin, and Raddock
(2000) and Board of Govenors of the Federal Reserve System (2017) provide overviews of how the
FRB measures capacity.

Capacity overhang (OVER). We construct a monthly measure of capacity overhang by
following the procedure described by Aretz and Pope (2018). In particular we recursively estimate
equation (1) of Aretz and Pope (2018) using total assets (Compustat Annual item AT) as our
measure of installed capacity.

Debt growth. We measure the growth rate of a firm’s debt by calculating the annual per-
centage change in outstanding total debt, expressed in real terms. We define total real debt as the
sum of long-term debt (Compustat Annual item DLTT) and debt in current liabilities (Compustat
Annual item DLC), scaled by the value of the consumer price index. When computing this quantity
we require firms to have at least $10m of debt outstanding in year t− 1.

Depreciation rate (BEA implied). To compute the BEA-implied depreciation rate we take
the GDP-weighted average of the industry-level depreciation rates associated with equipment and
structures.
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Depreciation rate (Compustat implied). We compute Compustat-implied industry-level
depreciation rates by first constructing firm-level depreciation rates. A firm’s depreciation rate is
defined as the firm’s depreciation expense (Compustat annual item DP) minus the firm’s amor-
tization (Compustat annual item AM) scaled by net property, plant, and equipment (Compustat
annual item PPENT). We then aggregate these firm-level depreciation rates to the industry-level
by computing the value-weighted depreciation rate across all firms assigned to a particular industry.

Equity issuance. Gross equity issuance is defined as the sale of common and preferred stock
(Compustat Annual item SSTK) divided by the lagged value of book equity, as per Belo et al.
(2018).

Gross profitability (GP). Consistent with Novy Marx (2013), gross profitability is calculated
as total revenue (Compustat Annual item REVT) minus the cost of goods sold (Compustat Annual
item COGS), divided by total assets (Compustat Annual item AT).

Hiring rate. The hiring rate is computed following Belo et al. (2014). Specifically, the hiring
rate in year t is the change in the number of employees (Compustat Annual item EMP) from year
t− 1 to year t, divided by the mean employees over years t− 1 and t.

Idiosyncratic volatility (IVOL). Idiosyncratic volatility is computed in accordance with
Ang et al. (2006). At the end of month t, a firm’s idiosyncratic volatility over the past month is
obtained by regressing its daily excess returns on the Fama and French (1993) factors, provided
there are at least 15 valid daily returns in the month. Idiosyncratic volatility is then defined as the
standard deviation of the residuals from the aforementioned regression.

Intangible investment rate (R&D / ME). We follow Lin (2012) and define a firm’s
intangible investment rate as the firm’s R&D expense (Compustat Annual item XRD) divided by
the firm’s market capitalization.

Inventory growth. The inventory growth rate is defined following Belo and Lin (2012). That
is, we compute the annual percentage change in each firm’s inventory holdings (Compustat Annual
item INVT) after converting the value of inventories to real terms.

Investment rate. We follow Stambaugh and Yuan (2017) and compute the investment rate
as the change in gross property, plant, and equipment (Compustat Annual item PPEGT) plus the
change in inventory (Compustat Annual item INVT) between years t − 1 and t, divided by the
value of total assets (Compustat Annual item AT) in year t− 1.

Leverage. We define a firm’s leverage ratio as long-term debt (Compustat Annual item DLTT)
plus debt in current liabilities (Compustat Annual item DLC) divided by total assets (Compustat
Annual item AT).

Market capitalization. A firm’s end of month t market capitalization is computed as the
firm’s end of month t stock price (CRSP Monthly item PRC) multiplied by the firm’s number of
shares outstanding (CRSP Monthly item SHROUT).

Natural investment rate. Following Belo et al. (2014) the natural rate of investment is
computed as capital expenditure (Compustat Annual item CAPX) minus the sales of property,
planet, and equipment (Compustat Annual item SPPE) scaled by the average net property, planet,
and equipment in years t and t− 1 (Compustat Annual item PPENT). Missing values of SPPE are
set to zero.

Organizational capital (OC). We construct the stock of a firm’s organizational capital by
following the perpetual inventory inventory method described by Eisfeldt and Papanikolaou (2013).
That is, we recursively accumulate a firm’s real selling, general and administrative expenses (Com-
pustat Annual item XSGA) over time, and scale the stock of organizational capital by the firm’s
total assets (Compustat Annual item AT).

Return-on-assets (ROA). Following Imrohoroglu and Tuzel (2014) return on assets (ROA)
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is computed as net income before extraordinary items (Computat Annual item IB) minus preferred
dividends (Compustat Annual item DVP), if available, plus deferred income taxes (Compustat
Annual item TXDI), if available, scaled by total assets (Compustat Annual item AT).

TechMark. Recalling equation (OA.3.6), total factor productivity (TFP) is comprised of
three distinct components: technology, time-varying markups, and time-varying capacity utiliza-
tion rates. We isolate the components of TFP related to technology and markups, referred to as
“TechMark,” as follows. First, we obtain firm-level estimates of the natural logarithm of TFP from
Imrohoroglu and Tuzel (2014). We refer to this variable as ln (TFPi,t). Next, we assign industry-
level capacity utilization rates to individual firms by following the matching algorithm described in
Section OA.3.3. We take the natural logarithm of these firm firm-level capacity utilization rates,
and denote this quantity ln (CUi,t). Finally, we define the TechMark variable for firm i at time t
as TechMarki,t = ln (TFPi,t)− ln (CUi,t).

Total factor productivity (TFP). The firm-level estimates of TFP are drawn from Imro-
horoglu and Tuzel (2014).

OA.2 Capacity utilization data and summary statistics

The public report on industrial capacity utilization covers 57 industries. These industries are
defined at different levels of aggregation ranging from two- to six-digit North American Industry
Classification System (NAICS) codes. Specifically, 12 of the industries are crude aggregates that
span multiple two-digit NAICS codes. For example, one of these 12 aggregates includes the average
capacity utilization rate of all manufacturers in the United States. We remove these 12 crude
aggregates from our benchmark sample for two reasons. First, these aggregates do not provide new
information as they are spanned by more granularly defined sub-industries that are also included
in the sample. Second, these aggregates represents a considerable proportion of total market value
and would consequently dominate the returns of the value-weighted portfolios we form in Section 1.
Removing these 12 crude aggregates leaves us with a benchmark cross-section of 45 industries that
features a mix of durable manufacturers, nondurable manufacturers, and miners and utilities.25

As the 45 industries included in the benchmark sample are defined from the relatively coarse
two-digit NAICS code level to the most granular six-digit NAICS code level, the benchmark cross-
section includes a number of overlapping industries.26 For instance, the capacity utilization rate
of food manufacturers is included in the utilization rate of two industries reported by the FRB:
“Food,” as well as “Food, beverage, and tobacco.” Since removing overlapping industries from our
benchmark sample would significantly reduce the number of cross-sectional assets, and thus, make
certain asset pricing tests, such as portfolio double sorts, infeasible, we deal with this overlap in
two ways. First, in robustness section OA.3.1 we remove the industries that overlap with others
and conduct our baseline empirical tests in a sub-sample of 24 distinct non-overlapping industries,
each of which corresponds to a unique three-digit NAICS code. Following the example above, this
set of distinct industries includes both “Food”’ and “Beverage and Tobacco” manufacturers, but
excludes the composite index that covers both groups of manufacturers. Table OA.3.3 shows that
the utilization premium is significant even within this narrower sample. Second, we verify that our
results are not driven by any particular industry that dominates the sample (see Tables OA.3.13).

Monthly utilization data for 32 industries are available in January 1967, and data for an ad-

25A list of these 45 industries, along with each industry’s sector, is provided in Table OA.2.1 of the Online Appendix.
26In particular, our final sample consists of one sector defined at the two-digit NAICS level, 27 subsectors defined

at the three-digit NAICS level, 13 industry groups defined at the four-digit NAICS level, two industries defined at
the five-digit NAICS level, and two U.S. industries defined at the six-digit NAICS level. In Section OA.3 we ensure
that our results are robust to this heterogeneity in classification levels.
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ditional 25 industries becomes available in January 1972.27 The utilization data we collect ends
in December 2015, when we commenced the empirical analysis of the paper. We verify in Section
OA.3.1 that our results hold when we only consider the most recent half of the sample period.

OA.2.1 Summary statistics

Below, we describe the properties of the aggregate capacity utilization rate and report summary
statistics related to the cross-section of industry-level utilization rates.

Figure OA.2.1 shows the annual growth rate of aggregate capacity utilization over the sample
period. The figure shows that utilization fluctuates significantly over time and that the growth
rate of aggregate utilization is procylical. The aggregate utilization rate drops during recessions,
particularly during the Great Recession. The growth rate of aggregate utilization tends to slightly
lead the business cycle, and has often served as an early warning for recessions. In five out of the
seven recessions during our sample period the growth rate of utilization begins to drop prior to the
start of the recession. The growth rate of capacity utilization increases during the technological
revolution of the late 1990’s, the housing bubble, and the recovery from the Great Recession.

As illustrated by equation (1), the capacity utilization rate is a combination of both industrial
production and capacity. The former variable is studied extensively in the macroeconomic and
finance literature, and features prominently in the context of asset pricing. For instance, Cooper
et al. (2008) document a premium for firms with lower total asset growth. The growth rate of assets
is directly linked to firms’ output, and is consequently captured by the FRB’s measure of industrial
production. To establish the empirical novelty in examining capacity utilization, we examine the
extent to which utilization fluctuates independently of industrial production using:

∆CUt = β0 + β1∆IPt + εt. (OA.2.1)

Here, ∆CUt (∆IPt) is annual growth rate of aggregate capacity utilization (industrial production),
and the residual εt captures the component of capacity utilization that is orthogonal to industrial
production. Figure OA.2.1 also displays this orthogonal component over the sample period. The
dynamics of this orthogonal component do not appear to reflect the dynamics of a white noise
process. εt is smoother than utilization growth, and changes in εt are largely procylical. Similar
to utilization growth, εt tends to drop during NBER recessions. In some instances the orthogonal
component also deviates significantly from capacity utilization growth. For example, during the
technology boom of mid-1990’s, the orthogonal component declines whereas capacity utilization
increases. The orthogonal component drops due to an acceleration in the growth of capacity that
was likely facilitated by the technological advancements of the era (Bansak, Morin and Starr 2007).

Table OA.2.2 reports summary statistics for the capacity utilization rates of each sector in our
benchmark sample. The average rate of aggregate capacity utilization rate is 79.91%. This figure
for the U.S. is close to the average capacity utilization rates of 81.17%, 84.69%, and 82.49% for the
Euro Zone, China, and Israel, respectively.28

The majority of the utilization data in the sample pertains to the manufacturing sector, with
an almost even split between durable and nondurable manufacturing industries. The mean annual
utilization rate is 77.39% (80.09%) for durable (nondurable) manufacturers. Each of these rates
is statistically indistinguishable from the average rate of capacity utilization across all industries
in the sample. The fact that the average utilization rate of the manufacturing sector, and of
the durable and nondurable manufacturing subsectors, is not statistically different from the U.S.
average alleviates the concern that our results are driven by ex-ante heterogeneity between sectors.

27There are only 11 monthly time-series reported between January 1948 to December 1966. As eleven industries is
a very small cross-section, we do not consider the pre-1967 period in our benchmark sample.

28See https://www.dallasfed.org/institute/oecd for data on these utilization rates recorded by the Organiza-
tion for Economic Cooperation and Development (OECD) and reported by the Federal Reserve Bank of Dallas.
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Among mining industries and utilities the average utilization rate is 84.13%. This average rate
is slightly higher than, and statistically different from, the average rate across all industries. Due
to this difference in average capacity utilization rates we verify that our empirical results are robust
to excluding mining industries and utilities from our sample. We also verify that our results still
hold when we conduct tests using the growth rate of utilization that eliminates differences in levels
by construction. The results of both of these tests are reported in Section OA.3.

Table OA.2.2 also reports the volatility and autocorrelation of utilization for the different sectors
in our sample. The volatility of the capacity utilization rate is comparable across sectors and ranges
from 6.67% per annum for mining to 8.29% per annum for durables. The autocorrelation ranges
from 0.52 to 0.61, with an all-industry mean of 0.58. These statistics affirm the notion that the
level of utilization follows similar dynamics regardless of sector.

Overall, Table OA.2.2 shows that the unconditional average rate of utilization is only slightly
different between sectors. In particular, most differences between the average utilization rate of a
sector and the average aggregate utilization rate are statistically indistinguishable from zero. In
contrast to these unconditional differences, the asset pricing tests we conduct rely on conditional
variation in utilization rates. Thus, our tests exploit the fact that the relative ranking of industries
in terms of utilization changes over time. Untabulated results show that if we assume that utilization
rates are constant over time, and try to utilize the small unconditional differences in the average
rate of utilization between industries to perform the empirical tests, our results cease to hold.

Finally, Table OA.2.3 shows the correlation between capacity utilization and other industry-
level production-based characteristics for the average industry in our sample. The characteristics
considered include book-to-market, TFP, the hiring rate, sales-to-assets, and the investment rate.
While utilization has a positive correlation with productivity, hiring, sales, and investment, these
average correlation are fairly low. For example, the average correlation between the investment rate
and utilization is only 0.16. This suggests that varying utilization constitutes a separate degree
of freedom for managers to smooth dividends, and that any interaction between utilization and
expected returns is likely to be independent of the well-established book-to-market and investment
rate effects on risk premia.

Table OA.2.1: Sample composition and industry specification

Industry name Sector Overlap Start year
Nonmetallic mineral product D No 1967
Primary metal D No 1967
Fabricated metal product D No 1967
Machinery D No 1967
Transportation equipment D No 1967
Motor vehicles and parts D Yes 1967
Aerospace and miscellaneous transportation eq. D Yes 1967
Furniture and related product D No 1967
Computers, communications eq., and semiconductors D Yes 1967
Wood product D No 1972
Iron and steel products D Yes 1972
Computer and electronic product D No 1972
Computer and peripheral equipment D Yes 1972
Communications equipment D Yes 1972
Semiconductor and other electronic component D Yes 1972

Continued on the next page...
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Table OA.2.1 – Continued from the previous page

Industry name Sector Overlap Start year
Electrical equipment, appliance, and component D No 1972
Automobile and light duty motor vehicle D Yes 1972
Miscellaneous D No 1972
Food, beverage, and tobacco ND Yes 1967
Leather and allied product ND No 1967
Paper ND No 1967
Petroleum and coal products ND No 1967
Chemical ND No 1967
Plastics and rubber products ND No 1967
Food ND No 1972
Beverage and tobacco product ND No 1972
Textile mills ND No 1972
Textiles and products ND Yes 1972
Textile product mills ND No 1972
Apparel ND No 1972
Apparel and leather goods ND Yes 1972
Printing and related support activities ND No 1972
Synthetic rubber ND Yes 1972
Plastics material and resin ND Yes 1972
Artificial and synthetic fibers and filaments ND Yes 1972
Mining MU No 1967
Metal ore mining MU Yes 1967
Nonmetallic mineral mining and quarrying MU Yes 1967
Electric power generation, transmission, and distribution MU Yes 1967
Electric and gas utilities MU Yes 1967
Natural gas distribution MU Yes 1967
Coal mining MU Yes 1967
Oil and gas extraction MU No 1972
Mining (except oil and gas) MU No 1972
Support activities for mining MU No 1972

The table lists the industries for which capacity utilization data is available at FRED. This set of industries comprises

our benchmark sample. For each industry, the table specifies its name, its sector (D denotes the durable sector, ND

denotes the nondurable sector, and MU refers to the mining and utilities sector), whether certain industry constituents

overlap with other industries in the sample, and the first year in which the industry appears in the sample. All data

ends at December 2015.
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Table OA.2.2: Summary statistics of the capacity utilization rate by sector

Sector N Mean t(Sector-All) SD AC(1)

All industries 45 79.91 – 7.38 0.58

Manufacturing 35 78.70 (-0.75) 7.58 0.57

Durable 18 77.39 (-1.58) 8.29 0.52

Nondurable 17 80.09 (0.12) 6.83 0.61

Mining and utilities 10 84.13 (2.35) 6.67 0.60

The table reports the mean, standard deviation (SD), and autocorrelation (AC(1)) of the annual capacity utilization

rates for each sector in the sample. N represents the number of industries within each sector for which a time-series of

capacity utilization data available on FRED. The column t(Sector-All) shows the Newey and West (1987) t-statistic,

in parentheses, for the difference in the average capacity utilization rate between the sector denoted in the leftmost

column and the average capacity utilization rate across all industries (the top row). The data spans the period 1967

to 2015.

Table OA.2.3: Average industry-level correlation between production-based character-
istics

CU BE / ME TFP Hire Rate Sales / Assets I / K

CU 1.00 -0.15 0.11 0.13 0.15 0.16

BE / ME 1.00 0.04 -0.26 0.26 -0.00

TFP 1.00 0.23 0.29 0.48

Hire Rate 1.00 0.05 0.53

Sales / Assets 1.00 0.27

I / K 1.00

The table shows the correlation between pairs of industry-level characteristics, averaged over all industries in the

sample. The characteristics are the capacity utilization rate (CU), the book-to-market ratio (BE/ME), total factor

productivity (TFP), the hiring rate (Hire Rate), the ratio of sales-to assets (Sales / Assets), and the investment rate

(I/K). At the end of each June from 1967 to 2015, each industry-level characteristic is constructed as the simple

average of the characteristic of interest over all firms that belong to the industry at the point in time. For each

industry, we then compute the correlation between industry-level characteristic X and industry-level characteristic

Y over the sample period, and report the average value of this correlation across all industries in the sample. The

data is annual and runs from 1967 to 2015. Additional details on the construction of each variable are provided in

Section OA.1 of the Online Appendix.
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Figure OA.2.1: Capacity utilization: orthogonality from industrial production

The figure shows the time-series of aggregate capacity utilization growth (dashed red line), as well as the component

of capacity utilization growth that is orthogonal to industrial production growth (solid blue line). The orthogonal

component of capacity utilization component is obtained from the residuals of the following projection: ∆CUt =

β0 + β1∆IPt + εt, where CU is aggregate capacity utilization, IP is industrial production, and εt is the component

of capacity utilization that is orthogonal to industrial production. The horizontal axis shows years and grey shaded

regions denote NBER recessions. The right (left) vertical axis represents changes in (the orthogonal component of)

capacity utilization. All growth rates are annual, and the sample period ranges from July 1967 to July 2015.

OA.3 Additional empirical results

OA.3.1 Methodological variations in portfolio formation

In this section we show that the capacity utilization spread is also robust to several implemen-

tation choices related to the portfolio formation procedure described in Section 1.2.

Variation in breakpoints. In the benchmark analysis we use the 10th and 90th percentiles

of the cross-sectional distribution of capacity utilization rates as breakpoints for the low and high

utilization portfolios. Here, we modify these breakpoints and sort industries into portfolios using

either (i) quintiles or (ii) the 30th and 70th percentiles of the cross-sectional distribution of capacity

utilization rates. These choices of breakpoints either double or triple the number of industries in

each of the low and high capacity utilization portfolios. The value- and equal-weighted returns of

the quintile portfolios are reported in Panel A of Table OA.3.1, while the returns obtained by using

the 30th and 70th percentiles of the distribution of utilization rates are reported in Panel B. Despite

using coarser breakpoints, the value-weighted utilization spread in each panel is close to 5% per

annum and statistically significant. This spread is less than 1% smaller in magnitude than the

benchmark. Portfolio returns also tend to decrease as the average utilization rate of each portfolio
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increases, with the equal-weighted returns showing strict monotonicity in utilization.

Variation in the sample period. While our sample period spans July 1967 to December

2015, we consider the impact of breaking the sample in half and examining the utilization spread in

the most recent subsample that starts in July 1991. This subsample analysis is reported in Table

OA.3.2 and shows that the magnitude of the spread is larger in the recent subsample than it is

over the entire sample period. While the value-weighted spread has a mean return of 5.67% per

annum between July 1967 and December 2015, its mean return between July 1991 and December

2015 is 9.09% per annum. As the second half of the sample is populated by two major recessions,

the recession of the early 2000s and the Great Recession, this result also shows that the utilization

spread is largely countercyclical.

Variation in the sample of industries. Our benchmark results are based on a cross-section

of 45 industries. However, as explained in Section OA.2, some of these industries are comprised of

firms that belong to multiple industries in the sample. To ensure that our results are not driven

by this feature of the data, we repeat our baseline analysis using a subsample of industries whose

constituent firms are distinct from one another. These 24 no-overlap industries are listed in Table

OA.2.1 and the results of repeating our benchmark portfolio sorts in this subsample of industries are

shown in Table OA.3.3. The value-weighted utilization spread is close to 6.65% per annum in this

subsample, and even larger than our benchmark spread of 5.7% per annum. The value-weighted

(equal-weighted) utilization spread is still statistically significant at the 5% (10%) level.

Relatedly, Table OA.3.13 exclude various sectors of the economy (e.g., durables or mining and

utilities) and shows that the utilization premium remains economically and statistically significant.

Likewise, Table OA.3.14 shows the premium is robust to sorting on the growth rate of utilization

thereby eliminating industry fixed effect in utilization’s level.

Collectively, the evidence clearly shows, to the best of our ability and available data, that the

utilization premium is not sensitive to the specific choice of industries comprising the sample.

Quarterly portfolio sorting. Table OA.3.4 shows that forming portfolios on a quarterly,

rather than an annual basis also leads to an economically large and statistically significant capacity

utilization spread. Here, we form portfolios at the end of each March, June, September, and

December using the lagged capacity utilization rate, and hold each portfolio for three months before

rebalancing. The value-weighted (equal-weighted) capacity utilization spread is 6.45% (5.23%) per

annum. Both are statistically significant at the 5% level.

Importance of conditional sorting. In untabulated results we demonstrate the importance

of the conditional portfolio sorting procedure described in Section 1.2. Specifically, we consider

an alternative procedure in which each industry is permanently assigned to the first portfolio it

is sorted into. This unconditional portfolio sort leads to a capacity utilization spread that is

both economically and statistically insignificant. This result highlights that there is a significant

degree of conditional variation in industry-level capacity utilization rates, and that this variation

is important for generating the capacity utilization spread.
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Table OA.3.1: Capacity utilization spread: alternative portfolio breakpoints

Panel A: Quintile portfolios

Value-weighted Equal-weighted

Portfolio Mean SD Mean SD

Low (L) 13.31 18.97 10.23 20.41

2 11.88 17.85 9.74 18.92

Medium 8.78 18.60 7.68 18.57

4 9.25 18.09 7.51 17.52

High (H) 8.44 17.79 5.87 18.64

Spread 4.87 14.07 4.35 11.80

(L-H) (2.35) (2.57)

Panel B: 30th and 70th percentile breakpoints

Value-weighted Equal-weighted

Portfolio Mean SD Mean SD

Low (L) 12.62 17.86 9.66 19.72

Medium 10.09 18.43 8.51 17.85

High (H) 7.75 17.18 6.22 17.86

Spread 4.86 13.44 3.44 10.43

(L-H) (2.47) (2.26)

The table reports annual returns of portfolios sorted on the basis of capacity utilization, as well as the spread

between the low (L) and high (H) capacity utilization portfolios. The construction of the portfolios is identical to the

benchmark analysis, except for the portfolio breakpoints used. In Panel A, we sort the cross-section of industries into

five portfolios based on quintile breakpoints. In Panel B, we sort the cross-section of industries into three portfolios

based on the 30th and 70th percentiles of the cross-sectional distribution of capacity utilization rates. Mean refers to

the average annual return and SD denotes the standard deviation of annual returns. Parentheses report t-statistics

computed using Newey and West (1987) standard errors. The portfolios are formed at the end of each June from

1991 to 2015 and are rebalanced annually.
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Table OA.3.2: Capacity utilization spread: results based on the recent subsample

Value-weighted Equal-weighted

Portfolio Mean SD Mean SD

Low (L) 15.29 22.74 11.72 21.81

Medium 10.04 16.95 8.24 16.86

High (H) 6.20 20.49 4.39 20.40

Spread 9.09 20.66 7.34 17.53

(L-H) (2.39) (2.22)

The table reports annual returns of portfolios sorted on the basis of capacity utilization, as well as the spread

between the low (L) and high (H) capacity utilization portfolios. The construction of the portfolios is identical to the

benchmark analysis, except that the sample period only includes the recent period from July 1991 to December 2015.

Mean refers to the average annual return and SD denotes the standard deviation of annual returns. Parentheses

report t-statistics computed using Newey and West (1987) standard errors. The portfolios are formed at the end of

each June from 1991 to 2015 and are rebalanced annually.

Table OA.3.3: Capacity utilization spread: results based on non-overlapping industries

Value-weighted Equal-weighted

Portfolio Mean SD Mean SD

Low (L) 15.43 20.56 11.52 20.25

Medium 10.36 16.70 7.94 18.17

High (H) 8.77 20.24 7.08 20.30

Spread 6.65 18.32 4.45 17.40

(L-H) (2.51) (1.77)

The table reports annual returns of five portfolios sorted on the basis of capacity utilization, as well as the spread

between the low (L) and high (H) capacity utilization portfolios. The construction of the portfolios is identical to the

benchmark analysis, except that the sample of industries is restricted to those industries whose constituents do not

belong to multiple industries in the sample (see Table OA.2.1, Column 3, for the list of these non-overlapping indus-

tries). Mean refers to the average annual return, SD denotes the standard deviation of annual returns. Parentheses

report t-statistics computed using Newey and West (1987) standard errors. The portfolios are formed at the end of

each June from 1967 to 2015 and are rebalanced annually, with portfolio returns spanning July 1967 to December

2015.
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Table OA.3.4: Capacity utilization spread: quarterly portfolio formation

Value-weighted Equal-weighted

Portfolio Mean SD Mean SD

Low (L) 13.66 21.91 10.33 21.52

Medium 10.69 16.65 8.23 17.55

High (H) 7.20 20.48 5.10 21.00

Spread 6.45 18.57 5.23 16.55

(L-H) (2.41) (2.21)

The table reports annual returns of three portfolios sorted on the basis of capacity utilization, as well as the spread

between the low (L) and high (H) capacity utilization portfolios. Here, portfolios are formed at the end of each

March, June, September, and December on the basis of each industry’s lagged capacity utilization rate. Each of these

portfolios is then held for three months before rebalancing. Mean refers to the average annual return, SD denotes

the standard deviation of annual returns. Parentheses report t-statistics computed using Newey and West (1987)

standard errors. The portfolios are formed at the end of each quarter from 1967 to 2015, with portfolio returns

spanning April 1967 to December 2015.

OA.3.2 Conditional CAPM and time-varying betas to aggregate productivity

In this section we show that time-varying exposures to the market (aggregate productivity)

fully absorb the utilization premium.

Conditional CAPM. We estimate the conditional CAPM to show that time variation in risk

exposures are important to reconcile the utilization premium. Here, we estimate the conditional

CAPM following the procedure outlined by Lewellen and Nagel (2006). That is, within each

year of the sample period, we estimate an unconditional CAPM regression that projects each

portfolio’s excess returns on excess market returns. We then compute the time-series average of

the corresponding CAPM alphas and betas. The results, reported in Table OA.3.5, confirm that

a single-factor model is able to explain the utilization premium. Accounting for time-variation

in CAPM betas reduces the economic magnitude of the average CAPM alphas compared to the

unconditional specification and renders the CAPM alpha statistically insignificant.

Internet appendix - p.12



Table OA.3.5: Capacity utilization spread: conditional CAPM alphas and betas

CAPM alpha CAPM beta

Portfolio α t(α) β t(β)

Low (L) 0.81 (0.33) 1.15 (9.66)

Medium -1.05 (-0.48) 1.06 (11.70)

High (H) -3.99 (-0.57) 0.92 (10.85)

Spread 3.43 (1.34) 0.18 (2.35)

(L-H)

The reports the alphas and betas obtained from estimating the conditional CAPM following the methodology proposed

by Lewellen and Nagel (2006). We implement this analysis to obtain the conditional CAPM alphas and betas of each

value-weighted utilization-sorted portfolio in two steps as follows. First, within each year of the sample period, we

estimate an unconditional CAPM regression and record the alpha and beta associated with each portfolio. Second,

we compute the time-series average of the estimated alphas and betas, and report these time-series averages in the

table. We annualize each alpha by multiplying the time-series average of the monthly alphas obtained in the second

step of the procedure by 12. Parentheses report Newey and West (1987) t-statistics, and the sample is from July

1967 to December 2015.

Non-linear model exposures. We complement the former evidence using other proxies of

aggregate productivity and a non-linear model specification. By construction, the exposure of each

portfolio to aggregate productivity is varies over time and with the business cycle (if the loading on

the non-linear term is non-zero). We augment equation (2) with a quadratic aggregate productivity

term and estimate the following regression:

Retei,t = β0,i + β1,iAgg-Prodt + β2,iAgg-Prod
2
t + εi,t. (OA.3.1)

Here, Retei,t is the value-weighted excess return of the portfolio of interest, Agg-Prodt is a proxy for

aggregate productivity, and β1,i (β2,i) captures the exposure of portfolio i to the linear (quadratic)

effect of aggregate productivity.

We implement this analysis by considering three proxies for aggregate productivity: (i) the mar-

ket return, (ii) utilization-adjusted TFP growth from Fernald (2012), and (iii) labor productivity

from the BLS. We also combine the slope coefficients on the linear and quadratic terms to form

the (total) productivity beta of portfolio i (denoted by βi,prod) as:

βi,prod = E

[
∂Retei

∂Agg-Prod

]
= β1,i + 2β2,iE [Agg-Prod] , (OA.3.2)

and compute the standard errors associated with βi,prod using the Delta method. We report the

results of this analysis in Table OA.3.6.
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Table OA.3.6: Exposure of CU-sorted portfolios to aggregate productivity proxies

Market returns Util.-adjusted TFP Labor productivity

Portfolio βprod t(βprod) βprod t(βprod) βprod t(βprod)

Low (L) 1.37 (9.12) 1.18 (2.78) 0.88 (1.81)

Medium 1.25 (11.12) 0.76 (2.27) 0.54 (1.33)

High (H) 1.07 (6.53) 0.78 (2.02) 0.54 (1.18)

Spread (L-H) 0.30 (3.53) 0.40 (1.91) 0.34 (1.94)

Intercept 1.27 (0.41) 4.46 (1.33) 3.08 (0.99)

The table reports the exposures of portfolios sorted on capacity utilization to three different aggregate productivity

proxies. The regression we estimate is: Retei,t = β0,i+β1,iAgg-Prodt+β2,iAgg-Prod2
t +εi,t, where Retei,t is the value-

weighted excess return of portfolio i, Agg-Proxy is a proxy of aggregate productivity, and β1 (β2) is the sensitivity of

portfolio i’s excess return to the linear (quadratic) aggregate productivity term. We combine the linear and quadratic

sensitivities to form the productivity beta (βprod) following equation (OA.3.2), and report βprod in the table. Here,

Agg-Proxy is either (i) excess market returns, (ii) utilization-adjusted TFP growth from Fernald (2012), or (iii) labor

productivity growth from the BLS. Monthly returns are aggregated to the quarterly frequency so that each regression

is estimated using quarterly data. Newey and West (1987) t-statistics associated with each exposure are reported

in parentheses, with the standard errors associated with βprod computed using the delta method. “Intercept” refers

to the annualized value of β0 (obtained by multiplying β0 by four) from projecting the utilization spread on each

productivity proxy. Finally, the sample spans July 1967 to December 2015.

Comparing Table OA.3.6, which features a non-linear relation to aggregate productivity, to

Table 2, which features only a linear relation, delivers three key takeaways. First, accounting

for the non-linear term, the low utilization portfolio’s exposure to aggregate productivity remains

significantly larger than the high utilization portfolio’s exposure to productivity. Second, with

non-linear exposures to aggregate productivity, the differences in productivity betas (L-H) in Table

OA.3.6 are at least as large, if not larger, than those reported in Table 2. Third, when we measure

aggregate productivity using excess market returns, the economic magnitude of the intercept falls

to 1.27% per annum and becomes statistically insignificant with a t-statistic of 0.41. Likewise, the

intercept from projecting the utilization premium on utilization-adjusted TFP growth from Fernald

(2012) becomes statistically insignificant.

Relation between conditional exposure and utilization. We show that capacity uti-

lization correlates with industries’ conditional exposure to aggregate productivity (CAPM betas).

We establish this link in two steps. First, for each industry j and each month t, we estimate the

following time-series regression using the past 60 months of stock return data

Re
j,t−60→t = αj,t + βj,tMKTRFt−60→t + εj,t−60→t, (OA.3.3)

where, Re
j,t−60→t denotes the excess stock return of industry j, MKTRF represents the market

excess return, and βj,t is the conditional exposure of industry j to aggregate productivity at time

t. Estimating this time-series regression for each industry and each month of our sample delivers a

panel containing each industry’s conditional risk exposure between July 1972 and December 2015.

Next, we estimate the following panel regression that projects the risk exposures onto capacity

utilization, and other monthly industry-level variables, observable at time t

βj,t = αj + δt + βCUCUj,t + βX′
j,t + εj,t. (OA.3.4)

Here, CUj,t denotes the utilization rate of industry j in month t. βCU captures the degree to which

Internet appendix - p.14



capacity utilization is, on average, informative about conditional risk exposures. Xj,t is a vector of

other industry-level controls that vary at the monthly frequency, including the size, idiosyncratic

volatility, and momentum of industry j. αj is an industry fixed effect, and δt is a time fixed effect

that absorbs changes in conditional risk exposures common to all industries. We standardize each

independent variable (to aid the interpretation of the marginal effects across specifications) and

compute t-statistics using standard errors clustered by both industry and time.

Panel A of Table OA.3.7 shows that without controlling for other industry-level characteristics,

the capacity utilization rate is highly informative about an industry’s conditional CAPM beta.

For instance, Column 1 shows that a one standard deviation increase in capacity utilization is

associated with a −0.09 decrease in an industry’s conditional market beta. Controlling for both

time and industry fixed effects in Column 3 yields similar results. Moreover, Panel B indicates that

the negative association between capacity utilization rates and conditional market betas remains

significant when additional control variables are added to each specification.

Table OA.3.7: Sensitivity of conditional CAPM betas to capacity utilization

Panel A: No controls Panel B: Controls

(1) (2) (3) (4) (5) (6)

CU -0.09 -0.09 -0.05 -0.09 -0.07 -0.05

(-3.87) (-3.09) (-2.33) (-3.86) (-2.76) (-2.38)

Size -0.35 -1.00 0.20

(-1.22) (-1.70) (1.66)

IVOL 0.49 0.99 0.02

(1.93) (1.62) (0.22)

Momentum -0.07 0.07 -0.15

(-0.65) (0.29) (-4.81)

Time FE No Yes Yes No Yes Yes

Industry FE No No Yes No No Yes

R2 0.05 0.12 0.55 0.07 0.17 0.55

Obs. 23363 23363 23363 23363 23363 23363

The reports the relation between conditional CAPM betas, capacity utilization rates, and other industry-level char-

acteristics. We implement this analysis in two steps. In the first step, we obtain the conditional CAPM beta of each

industry j in each month t by estimating the time-series regression represented by equation (OA.3.3) using the past

60 months of stock return data. In the second step, we project the conditional CAPM beta of each industry j at

each time t on a set of industry-level characteristics including the industry’s (i) capacity utilization rate, (ii) size, (iii)

idiosyncratic return volatility, and (iv) return momentum. The specification of the panel regression we use in this

second step is represented by equation (OA.3.4). The regressions in Panel A feature no additional control variables

beyond the capacity utilization rate, whereas the regressions in Panel B include all control variables. We scale each

independent variable by its unconditional standard deviation prior to estimating and reporting each slope coefficient.

Parentheses represent t-statistics computed using standard errors clustered by industry and month. Finally, the

sample period is from July 1967 to December 2015.

Non-linear model: robustness using quintiles. Table OA.3.8 repeats the non-linear model

analysis using five, rather than three, portfolios sorted on utilization rates. We use the market

portfolio as a proxy for aggregate productivity. Even with quintile portfolios: (i) productivity

exposures tend to decline with utilization, and (ii) the linear and non-linear productivity exposures

of the low utilization portfolio are significantly higher than those of the high utilization portfolio.
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Panel B also shows that the non-linear alpha is only 0.67% per annum and statistically insignificant.

Table OA.3.8: Exposures of quintile portfolios to aggregate productivity

Panel A: Linear Panel B: Non-linear

Portfolio βprod t(βprod) βprod t(βprod)

Low (L) 1.29 (11.76) 1.33 (10.70)

2 1.27 (11.68) 1.30 (10.68)

Medium 1.28 (10.47) 1.28 (9.53)

4 1.16 (10.96) 1.19 (10.38)

High (H) 1.08 (8.72) 1.08 (7.38)

Spread (L-H) 0.21 (2.74) 0.25 (3.00)

Intercept (L-H) 3.82 (1.79) 0.67 (0.26)

The table reports the exposures of portfolios sorted on capacity utilization to aggregate productivity. The regression

we estimate is: Retei,t = β0,i+β1,iAgg-Prodt+β2,iAgg-Prod2
t +εi,t, where Retei,t is the value-weighted excess return of

portfolio i, Agg-Proxy is the aggregate productivity proxy, and β1 (β2) is the sensitivity of portfolio i’s excess return

to the linear (quadratic) aggregate productivity term. We combine the linear and quadratic sensitivities to form the

productivity beta (βprod) following equation (OA.3.2), and report βprod in the table. Here, Agg-Proxy is measured

using excess market returns. Monthly returns are aggregated to the quarterly frequency so that each regression is

estimated using quarterly data. Newey and West (1987) t-statistics associated with each exposure are reported in

parentheses, with the standard errors associated with βprod computed using the delta method. “Intercept” refers

to the annualized value of β0 (obtained by multiplying β0 by four) from projecting the utilization spread on the

productivity proxy. Finally, the sample spans July 1967 to December 2015.

OA.3.3 Assigning industry-level utilization rates to CRSP/Compustat firms

When applicable, we assign each firm a capacity utilization rate that corresponds to the uti-

lization rate of the industry to which the firm belongs. However, recall from Section OA.2 that our

sample is comprised of industries that are defined with different degrees of granularity. This means

that some firms may be matched to more than one industry. We execute the following matching

algorithm to ensure that each firm is matched to the most granularity defined industry to which it

belongs. We start by assigning utilization rates to all firms that belong to a six-digit NAICS code

industry for which utilization data is available. We then consider the five-digit NAICS code indus-

tries and identify the constituents of these industries that were not previously assigned a utilization

rate. These firms are then assigned a utilization rate corresponding to a five-digit NAICS code in-

dustry. This procedure then continues to the four-, three-, and two-digit NAICS code industries, in

that order. If a previously unmatched firm belongs to two or more N -digit NAICS code industries,

then we assign the firm the utilization rate of its “parent” (N -1)-digit NAICS code industry. Any

firms unmatched at the end of this procedure are removed from the sample.

OA.3.4 Independence from value, investment, and organizational capital

Independence using Fama-Macbeth regressions. Table 5 reports the results of the Fama

and MacBeth (1973) regression analysis outlined by equation (3). Columns (1) to (6) show that

the coefficient on utilization is negative and significant at the 5% level when we include another

investment-related characteristic in the regressions, including TFP, hiring rate, investment rate,
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capital overhang, and book-to-market ratios. The signs of the average slope coefficients of the other

characteristics are consistent with the spreads associated with each characteristic of interest.29

Columns (7) to (9) control for several investment-related characteristics jointly. In all cases,

utilization’s predictive power for returns remains significant at the 5% level. Lastly, Column (10)

considers all of the aforementioned characteristics in addition to size, organizational capital, and

past returns.30 Compared to Columns (1) to (9), the slope coefficient on utilization in Column (10)

is largely similar. The slope coefficients on the other characteristics also remain similar, with the

exception of the loading on TFP that flips sign from negative to positive. However, this change in

sign does not compromise the validity of the TFP spread as a number of the investment-related

characteristics included in this specification are relatively highly correlated. In all, the regression

evidence shows that the relation between utilization and stock returns is materially distinct from

to the known relations between returns and each of TFP, hiring, investment, and B/M.

Independence using portfolio double sorts. We corroborate the results of the Fama and

MacBeth (1973) analysis by conducting conditional portfolio double sorts. That is, we conditionally

sort the sample of industries into portfolios along two dimensions. The first dimension corresponds

to either (i) book-to-market ratios, (ii) physical investment rates, or (iii) ratios of organizational

capital to assets, while the second dimension reflects the capacity utilization rate.

The motivation behind this exercise is to control for one variable of interest (e.g., B/M) and

show that controlling for the first dimension, the utilization premium remains significant. We focus

on book-to-market ratios and investment rates as these are the only two characteristics in Panel B of

Table 3 that are significantly different between the extreme utilization portfolios and also command

a risk premium that is aligned with the utilization spread. While the difference in organizational

capital is insignificant across the utilization portfolios, we conduct this double sort to rule out the

possibility that low utilization is mechanically driven by a higher reliance on intangible capital.

The double sorts are implemented as follows. At the end of each June from 1967 to 2015 we

first sort the cross-section of firms into three portfolios based on either their (i) book-to-market

ratios, (ii) investment rates, or (iii) organizational capital-to-asset ratios. We use the 30th and 70th

percentiles of the firm-level cross-sectional distribution of each characteristic to assign each firm to

one of three portfolios. Next, within each of these three characteristic-sorted portfolios, we further

sort firms into three additional portfolios on the basis of capacity utilization. We also use the

30th and 70th percentiles of the cross-sectional distribution of capacity utilization rates in March of

the same year to determine portfolio membership in this second step. This process produces nine

portfolios that are each held from the beginning of July in year t to the end of June in year t+ 1,

at which point in time all portfolios are rebalanced.31

Table OA.3.9 reports the results of the bivariate portfolio sorts on the basis of both value- and

29Imrohoroglu and Tuzel (2014) show that low TFP predicts high returns, Belo et al. (2014) find low hiring is
associated with high returns, Titman, Wei, and Xie (2004) documents the relation between low investment rates and
high returns, Aretz and Pope (2018) find higher capacity overhang predicts lower returns, and Fama and French
(1993) discuss how both low market capitalization and high market-to-book ratios predict high returns.

30Untabulated results show that adding sector fixed effects to column (10) of Table 5 produces quantitatively
similar results.

31The portfolio breakpoints used in the bivariate sorting procedure described above (the 30th and 70th percentiles)
are necessary to ensure that there is a sufficient number of firms in each of the nine doubles-sorted portfolios (note
that Table OA.3.1 shows that the utilization premium is sizable and significant using a univariate sort that is based
on these breakpoints).
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equal-weighted portfolio returns. The rightmost column of each panel shows the capacity utilization

spread, along with its associated p-value, within portfolios that control for a characteristic of

interest. Panels A and B report the results obtained by first controlling for book-to-market ratios,

Panels C and D report the results obtained by first controlling for investment rates, while Panels

E and F report the results obtained by first controlling for organizational capital. Finally, each

panel of the table also reports the p-value from a joint test on the null hypothesis that the capacity

utilization spread across all three characteristic-sorted portfolios is zero.

The results show that after controlling for either book-to-market ratios, investment rate, or-

ganizational capital, the capacity utilization spread remains positive in 15 out of 18 cases. The

utilization spread is also quantitatively large and statistically significant in most cases.

Panel A shows that, keeping book-to-market ratios relatively constant, the equal-weighted ca-

pacity utilization spread is significantly different from zero at the 10% level within the low book-to-

market portfolio and at the 5% level for both the medium and the high book-to-market portfolios.

The joint p-value across the three spread portfolios is under 8%. The value-weighted returns re-

ported in Panel B show that the capacity utilization spread is most pronounced among growth firms.

Within this low book-to-market portfolio, the capacity utilization spread exceeds 6% per annum.

The p-value of 0.016 associated with the joint test in Panel B shows that the three value-weighted

utilization spreads are statistically significant after conditioning on book-to-market.

Panels C and D show that, regardless of whether portfolio returns are value-weighted or equal-

weighted, the capacity utilization spread typically exceeds 4% per annum within the portfolios of

low and medium investment rate firms. In each of these cases the utilization spread is significantly

different from zero at better than the 1% level. While the capacity utilization spread is not sig-

nificant within the high investment rate portfolios, the joint test reported in each Panel is still

rejected at the 5% level. Panel C (Panel D) shows that, conditioning on investment rates, the three

equal-weighted (value-weighted) capacity utilization spreads are jointly and significantly different

from zero at the 1% (5%) level.

Lastly, Panels E and F indicate that the utilization spread exists within organizational capital

portfolios. In particular, the value-weighted utilization spread among firms with medium amounts

of organization capital exceeds 4% per annum, and is statistically significant at better than the 1%

level. Moreover, the joint test reported in each panel is rejected at the 5% level or better.
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Table OA.3.9: Controlling for book-to-market ratios, investment rates, and organiza-
tional capital: double-sort analysis

Panel A: Capacity Utilization (EW) Panel B: Capacity Utilization (VW)

Low (L) Medium High (H) Spread(L-H) p(Spread) Low (L) Medium High (H) Spread(L-H) p(Spread)

Low (L)

B
E
/M

E 9.40 8.10 6.26 3.14 (p=0.079) 11.63 10.53 5.55 6.08 (p=0.001)

Medium 16.92 13.36 12.82 4.10 (p=0.012) 13.29 10.45 11.01 2.27 (p=0.084)

High (H) 19.89 17.49 16.66 3.23 (p=0.039) 14.47 12.70 14.49 -0.02 (p=0.503)

Joint test (p=0.076) Joint test (p=0.016)

Panel C: Capacity Utilization (EW) Panel D: Capacity Utilization (VW)

Low (L) Medium High (H) Spread(L-H) p(Spread) Low (L) Medium High (H) Spread(L-H) p(Spread)

Low (L)

I/
K

20.06 17.74 12.62 7.44 (p < 0.001) 15.52 11.30 10.55 4.97 (p=0.007)

Medium 17.07 13.65 13.08 3.99 (p=0.005) 13.35 10.64 9.07 4.28 (p=0.008)

High (H) 10.60 7.73 9.02 1.59 (p=0.249) 9.96 9.26 7.74 2.23 (p=0.180)

Joint test (p < 0.001) Joint test (p=0.045)

Panel E: Capacity Utilization (EW) Panel F: Capacity Utilization (VW)

Low (L) Medium High (H) Spread(L-H) p(Spread) Low (L) Medium High (H) Spread(L-H) p(Spread)

Low (L)

O
C

/
A
T 10.39 7.70 13.27 -2.87 (p=0.861) 10.18 10.11 11.16 -0.98 (p=0.661)

Medium 17.30 13.55 14.52 2.78 (p=0.021) 15.57 12.46 11.31 4.26 (p=0.007)

High (H) 20.19 17.50 16.60 3.59 (p=0.027) 16.57 12.20 14.63 1.94 (p=0.240)

Joint test (p=0.018) Joint test (p=0.038)

The table reports portfolio returns obtained from conditional double-sort procedures, where the controlling variable

(i.e., the first dimension sorting variable) is either a firm’s book-to-market ratio, investment rate, or organization

capital-to-assets ratio, and the second sorting variable is a firm’s rate of capacity utilization. The sorting algorithm

is as follows: First, at the end of each June, we sort the cross-section of firms into three portfolios on the basis of

either the book-to-market ratio, the investment rate, or organizational capital using the 30th and 70th percentiles of

the cross-sectional distribution of the characteristic of interest. Second, within each portfolio formed on the basis of

the first sorting variable, we further sort firms into three additional portfolios on the basis of capacity utilization,

using the 30th and 70th percentiles of the cross-sectional distribution of capacity utilization rates in March of the

same year. This process produces nine portfolios that are each held from the beginning of July in year t to the

end of June in year t + 1, at which point in time all portfolios are rebalanced. Portfolio returns are reported for

both equal-weighted (“EW”, Panels A, C, and E) and value-weighted (“VW”, Panels B, D, and F) schemes. The

rightmost column of each Panel shows the capacity utilization spread, along with its associated p-value, within

portfolios that are first sorted on the controlling variable. These p-values are constructed using Newey and West

(1987) standard errors. Each Panel also reports the p-value from a joint test on the null hypothesis that the capacity

utilization spread across all three characteristic-sorted portfolios is zero. Panels A and B report the results obtained

by first controlling for book-to-market ratios, Panels C and D report the results obtained by first controlling for

investment rates, while Panels E and F report the results obtained by first controlling for organizational capital.

The sample period is from July 1967 to December 2015.

Independence using projections. As an additional method of showing the independence

between the utilization premium and other spread, we consider the following set of projections that

regress the utilization premium at time t on another spread, including a constant

Utilizationpremiumt = α+ βXOther
t + εt. (OA.3.5)

Here, XOther
t represents the returns of the book-to-market, TFP, investment, size, profitability,

momentum, or idiosyncratic volatility spread at the t. If the utilization premium is simply a linear

transformation of the value premium (or any one of the other spreads represented by XOther
t ), then

the constant in this regression (α) will be zero. In contrast, the results in Panel A of Table OA.3.20

indicate that the utilization premium is economically and statistically distinct from these spreads.

For instance, projecting the utilization premium on the value premium results in an alpha of 5.11%
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per annum (t-statistic of 2.04). Thus, the utilization premium is materially distinct from a host of

(potentially related) risk premia.

OA.3.5 Independence from capital overhang

Aretz and Pope (2018) document that firms with higher capital overhang, or firms’ whose in-

stalled productive capacities exceed their optimal amounts of capacity, have lower expected returns.

The authors refer to these firms as possessing “capacity overhang.” While the Fama and MacBeth

(1973) regressions in Section 1.6 show that the utilization premium and the overhang spread are

empirically distinct, the conceptual similarity between these margins motivates us to discuss how

the notion of capacity utilization materially differs from that of capacity overhang. We also comple-

ment the regression analysis by showing that utilization and overhang each have a distinct impact

on stock returns using portfolio double sorts.

Recalling equation (1), capacity utilization is defined as the ratio of a firm’s actual output

to its maximum potential output (its capacity). On the other hand, capacity overhang is the

difference between a firm’s installed capital stock and its optimal (value maximizing) level of capital.

Intuitively, capacity utilization and capacity overhang are negatively related since a firm that

desires to downscale can reduce its output by lowering the utilization of its existing capital. At the

same time, the level of the firm’s optimal capital stock also drops. If capital adjustments are not

frictionless, then these frictions create a wedge between installed and optimal capacity, resulting

in capacity overhang. Consequently, capacity utilization tends to decrease at the same time that

overhang tends to increase.

The negative correlation between utilization and overhang is neither theoretically perfect nor

empirically large in magnitude. Theoretically, the reason for this less than perfect correlation is

that low capacity utilization is a result of a costless and optimal policy to keep some machines

idle.32 This optimal decision to reduce the utilization of capital does not hinge on any installation

frictions or adjustment costs. In contrast, capacity overhang depends crucially on the degree to

which investment is irreversible, as influenced by frictions such as convex adjustment costs. While

low capacity utilization is optimal in states of low productivity, a non-zero amount of capacity

overhang can never represent the first-best outcome for a firm. Consequently, capacity overhang

should always be zero in a frictionless economy, whereas capacity utilization may still fluctuate

depending on a firm’s productivity.

While capacity overhang and capacity utilization are conceptually distinct, the rest of this

section examines whether the two effects are also empirically distinct. Since Aretz and Pope (2018)

document that high capacity overhang is associated with low expected returns there is no ex-ante

reason to believe that the overhang effect is driving the capacity utilization spread. This is because

low capacity utilization firms tend to have both high returns and high amounts of capacity overhang.

Nonetheless, we perform portfolio double sorts to ensure that the capacity utilization spread is

empirically separate from the overhang effect. We show that, controlling for capital adjustment

frictions and the degree of irreversibility via the overhang measure of Aretz and Pope (2018), the

capacity utilization spread survives. Moreover, controlling for the frictionless production decisions

represented by capacity utilization, the overhang effect also survives.

32Keeping machines idle in bad states is not only costless, but may also benefit the firm by preserving capital for
future use in more productive states.
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To implement this analysis we construct a measure of firm-level capital overhang based on the

statistical procedure described by Aretz and Pope (2018), summarized in Section OA.1 of the Online

Appendix. Following the discussion on the conceptual relation between capacity utilization and

capacity overhang, Table OA.3.10 shows the correlation between overhang and utilization for each

industry in our sample.33 The magnitude of the correlation between the two variables decreases

with the degree of aggregation. When we aggregate all firms in our sample, the correlation between

capacity utilization and capacity overhang is negative, as expected, and amounts to -0.52. When we

compute the correlation between these two variables on an industry-by-industry basis and average

these pairwise correlations, the result is a modest average correlation of -0.32. The 95% confidence

interval for this cross-sectional correlation shows a high degree of dispersion and ranges from -

0.71 to 0.11. Panel C of this table reports that the average firm-level correlation drops to -0.11,

and shows that this correlation becomes even more dispersed in the cross-section of firms. These

results collectively highlight the fact that while capacity utilization and overhang are conceptually

negatively related, the empirical correlation between these two variables is low.

Table OA.3.11 reports the results of performing portfolio double sorts along the dimensions of

capacity utilization and capacity overhang using the conditional double-sort analysis as described

in Section OA.3.4. Panel A shows the average annual capacity utilization spread within three

capacity overhang sorted portfolios when all returns are equal-weighted. The capacity utilization

spread is positive and statistically significant within each overhang portfolio. The utilization spread

is also jointly significant across all three overhang portfolios. Panel B shows that the results are

similar when returns are value-weighted. Panels C and D report that the results are largely similar

after changing the order of the sorts. Controlling for capacity utilization, the joint tests in Panels

C and D show that the capacity overhang spread is positive and statistically significant on an

equal-weighted basis, but is insignificant on a value-weighted basis.

33The industry-level capacity overhang measure is obtained by computing the average overhang for all firms that
belong to each industry at each point in time. We also note that our sample is only comprised of manufacturing,
mining, and utilities firms, whereas the sample of Aretz and Pope (2018) includes the entire Compustat universe,
excluding financial firms and utilities.
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Table OA.3.10: Correlation between capacity utilization and capacity overhang

Panel A: Correlation by Industry

Industry name Sector ρCU,OV ER

Food, beverage, and tobacco ND -0.741

Printing and related support activities ND -0.728

Textile mills ND -0.690

Wood product D -0.687

Textiles and products ND -0.683

Beverage and tobacco product ND -0.642

Textile product mills ND -0.543

Computer and electronic product D -0.537

Food ND -0.534

Machinery D -0.528

Nonmetallic mineral product D -0.502

Support activities for mining MU -0.500

Coal mining MU -0.472

Computers, communications eq., and semiconductors D -0.469

Metal ore mining MU -0.450

Communications equipment D -0.392

Paper ND -0.366

Mining MU -0.348

Leather and allied product ND -0.345

Transportation equipment D -0.342

Mining (except oil and gas) MU -0.342

Semiconductor and other electronic component D -0.329

Automobile and light duty motor vehicle D -0.310

Motor vehicles and parts D -0.300

Primary metal D -0.254

Artificial and synthetic fibers and filaments ND -0.250

Chemical ND -0.248

Fabricated metal product D -0.214

Electrical equipment, appliance, and component D -0.195

Aerospace and miscellaneous transportation eq. D -0.183

Computer and peripheral equipment D -0.182

Apparel ND -0.170

Continued on the next page...
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Table OA.3.10 – Continued from the previous page

Panel A: Correlation by Industry

Industry name Sector ρCU,OV ER

Nonmetallic mineral mining and quarrying MU -0.144

Apparel and leather goods ND -0.140

Furniture and related product D -0.134

Plastics and rubber products ND -0.047

Plastics material and resin ND 0.002

Iron and steel products D 0.004

Petroleum and coal products ND 0.071

Miscellaneous D 0.083

Oil and gas extraction MU 0.157

Synthetic rubber ND 0.242

Panel B: Industry-level Summary Statistics

Statistic Mean Median p5 p95

ρCU,OV ER -0.32 -0.34 -0.71 0.11

Panel C: Firm-level Summary Statistics

ρCU,OV ER -0.11 -0.13 -0.66 0.51

Panel A shows the correlation between industry-level capacity utilization and industry-level capital overhang for each industry in the sample. Overhang at the

industry level is computed as the simple average of firm-level overhang rates for all firms that belong to each industry. Panel B reports summary statistics for the

industry-level correlations between capacity utilization and capacity overhang that are reported in Panel A. These summary statistics include the cross-sectional

mean, median, 5th and 95th percentiles of the distribution of industry-level correlation coefficients. Panel C reports these same summary statistics for firm-level

correlations between capacity utilization and capacity overhang.
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Table OA.3.11: Double-sorted portfolios: capacity utilization versus capacity overhang

Panel A: Capacity Utilization (EW) Panel B: Capacity Utilization (VW)

Low (L) Medium High (H) Spread(L-H) p(Spread) Low (L) Medium High (H) Spread(L-H) p(Spread)

Low (L)

O
ve
rh
an

g 19.27 16.14 15.99 3.28 (p=0.026) 17.03 12.21 11.75 5.28 (p=0.025)

Medium 17.59 14.04 14.54 3.05 (p=0.023) 14.14 10.38 11.21 2.93 (p=0.059)

High (H) 14.10 10.29 8.78 5.32 (p=0.021) 12.84 10.83 7.90 4.94 (p=0.007)

Joint test (p=0.061) Joint test (p=0.079)

Panel C: Overhang (EW) Panel D: Overhang (VW)

Low (L) Medium High (H) Spread(L-H) p(Spread) Low (L) Medium High (H) Spread(L-H) p(Spread)

Low (L)

C
U

19.00 17.29 13.48 5.52 (p<0.001) 16.03 13.84 12.24 3.79 (p=0.050)

Medium 15.49 14.00 10.98 4.51 (p<0.001) 10.27 10.21 10.24 0.03 (p=0.494)

High (H) 16.31 13.55 9.07 7.23 (p<0.001) 12.29 10.35 8.87 3.42 (p=0.029)

Joint test (p<0.001) Joint test (p=0.153)

The table reports portfolio returns obtained from conditional double-sort procedures in which one sorting variable is

capacity overhang and other sorting variable is capacity utilization. Two cases are considered: in Panels A and B the

controlling variable (i.e., the first dimension sorting variable) is overhang, and the variable used in the second-stage

sort is capacity utilization. In Panels C and D, the order is flipped: the first (second) stage sorting variable is capacity

utilization (overhang). The sorting algorithm is as follows. First, at the end of each June, we sort the cross-section

of firms into three portfolios on the basis of the first sorting variable, using the 30th and 70th percentiles of the

cross-sectional distribution of the variable of interest. Second, within each portfolio formed on the basis of the first

sorting variable, we sort firms into three additional portfolios on the basis of the second sorting variable, using the

30th and 70th percentiles of the cross-sectional distribution of the variable. This process produces nine portfolios

that are each held from the beginning of July in year t to the end of June in year t + 1, at which point in time

all portfolios are rebalanced. Both equal-weighted (“EW”, Panels A and C) and value-weighted (“VW”, Panels B

and D) portfolio returns are reported. The rightmost column of each Panel shows the spread on the basis of the

second sorting variable, along with the p-value associated with null hypothesis this spread is zero. These p-values

are constructed using Newey and West (1987) standard errors. Each Panel also reports the p-value from a joint test

on the null hypothesis that the three spreads obtained by forming portfolios in the second stage are jointly equal to

zero. The sample period is from July 1967 to December 2015.

OA.3.6 Dissecting the TFP spread

Imrohoroglu and Tuzel (2014) show that low productivity (TFP) firms earn a high risk premium.

While the results of Fama and MacBeth (1973) regressions reported in Table 5 show that utilization

predicts return beyond TFP, this section explores the relation and the distinction between the

capacity utilization premium and the productivity premium. The relation between the two can be

motivated by the general form of a firm’s production function:

Y = Technology × Markups × Utilization︸ ︷︷ ︸
Total factor productivity (TFP)

·F (K,L), (OA.3.6)

where F (·) is a production function over capital (K) and labor (L). The residual obtained

by projecting output on factor-share weighted capital and labor provides the Solow residual, or

an estimate for TFP. This TFP can then be decomposed into three elements: technology shocks,

time-varying markups, and time-varying capacity utilization.

We begin by examining whether the TFP spread exists in our sample of manufacturing firms,

mining firms, and utilities. This is necessary because our sample is more constrained compared

to the sample in Imrohoroglu and Tuzel (2014). The results of replicating the TFP spread in our

subsample of firms are reported in Panel A of Table OA.3.12. The equal-weighted TFP spread

amount to 4.22% per annum and is statistically significant.34

34The value-weighted TFP spread is positive yet statistically insignificant using our subsample and time frame.
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Table OA.3.12: Dissecting the productivity spread

Panel A: Univariate sorts on TFP

Value-weighted Equal-weighted
Portfolio Mean SD Mean SD

Low (L) 11.68 23.11 17.00 25.04
Medium 12.25 17.24 15.25 20.23
High (H) 11.16 16.18 12.78 20.73

Spread 0.51 13.79 4.22 12.23
(L-H) (0.25) (2.26)

Panel B: TFP spread controlling for CU

TFP (EW)
Low (L) Medium High (H) Spread(L-H) p(Spread)

Low (L)

C
U

19.24 17.09 14.68 4.56 (p=0.004)
Medium 16.30 13.81 12.09 4.21 (p=0.007)
High (H) 14.02 15.01 12.24 1.78 (p=0.143)

Joint test (p=0.031)

Panel C: Univariate sorts on TechMark

Value-weighted Equal-weighted
Portfolio Mean SD Mean SD

Low (L) 11.84 22.45 16.89 24.54
Medium 11.64 17.16 15.05 20.28
High (H) 11.66 16.17 13.60 20.91

Spread 0.18 12.90 3.29 11.52
(L-H) (0.09) (1.87)

Panel D: Unconditional correlations

ρ(CU,TFP) ρ(CU,TechMark) ρ(TFP,TechMark)
0.39 0.28 0.96

Panel A reports both the annual returns of value- and equal-weighted portfolios formed on total factor productivity
(TFP), and the spread between low and high TFP (or productivity) portfolios. Mean (SD) refers to the average
(standard deviation) of annual returns, and parentheses report Newey and West (1987) robust t-statistics. Panel
B reports equal-weighted portfolio returns obtained from a double sort procedure in which firms are first sorted
into three portfolios on the basis of capacity utilization (CU). Within each portfolio, firms are further sorted into
three portfolios on the basis of TFP. The rightmost column of the panel show the p-value from a test on the null
hypothesis that each TFP spread is zero, as well as a test on null hypothesis that the three spreads are jointly equal
to zero. Panel C reports the annual returns of three portfolios sorted on the technology and markups (TechMark)
component of TFP. In each of Panels A, B, and C, portfolio breakpoints are based on the 30th and 70th percentiles
of the cross-sectional distribution of the characteristic of interest. Panel D shows the pairwise correlations between
equal-weighted univariate spreads formed on CU, TechMark, and TFP. The sample period is from July 1967 to June
2015, when the TFP data becomes unavailable. Additional details on the construction of each variable are provided
in Section OA.1 of the Online Appendix.

Since capacity utilization is an underlying fundamental component of TFP, we begin by ex-

amining whether the TFP spread remains positive when controlling for capacity utilization. We

conduct this analysis using a firm-level dependent double sort as described in Section OA.3.4. In

other words, we construct the productivity spread within capacity utilization sorted portfolios. The

results are reported in Panel B of Table OA.3.12 and show that the TFP spread is 4.56%, 4.21%,

For this reason we only focus on equal-weighted returns in this subsection.
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and 1.78% per annum within the portfolio of firms with low, medium, and high rates of capacity

utilization, respectively. A joint test on the magnitude of the productivity premium across the

three capacity utilization portfolios is statistically significant at the 5% level. This suggests that

the productivity premium is distinct from the capacity utilization spread.

Next, we construct a measure for the technology and markup (TechMark) components of TFP

by taking the difference between TFP and the capacity utilization rate, as motivated by equation

(OA.3.6). This allows us to isolate the component of TFP that is separate from capacity utilization,

and examine the relation between this orthogonal component of TFP and stock returns. We sort

firms into portfolios based on the TechMark measure at the end of each June and report the results

of these univariate sorts in Panel C of Table OA.3.12. The annualized spread between low and high

TechMark firms is 3.29% and statistically significant.

Taken together, the results above indicate that the TFP premium is driven by two distinct

underlying spreads: the TechMark and utilization spreads. Each of these spreads is statistically

significant and economically large. We shed light on the contribution of each of these components to

the overall productivity spread in Panel D of Table OA.3.12. This panel shows that the correlation

between the TFP spread and the capacity utilization (TechMark) spread is 0.39 (0.96).

OA.3.7 Controlling for sectoral effects: Within-sector spread

Table 4 shows that some durable industries are often sorted into the low utilization portfolio,

whereas mining industries and utilities often exhibit high capacity utilization rates. The former fact

raises the concern that the utilization premium may be a manifestation of the durability spread

of Gomes, Kogan, and Yogo (2009). That is, the utilization spread may reflect the know fact

that durable manufacturers are riskier than nondurable manufacturers. The latter fact raises the

concern that the utilization spread is dominated by one particular sector and may reflect ex-ante

heterogeneity between different sectors, as opposed to reflecting a risk premium that exists within

sectors. We alleviate both concerns below.

First, only three (two) of the five industries that are most commonly sorted into the low (high)

capacity utilization portfolio are durable (nondurable) manufacturers (recall Table 4). Furthermore,

the most common industry constituents of the high capacity utilization portfolio are not nondurable

manufacturers, as may be expected if the utilization spread were strongly associated with the

durability premium.

Second, in the left panel of Table OA.3.13 we examine the utilization premium within a subsam-

ple of industries that only includes durable manufacturers. Specifically, we sort the cross-section of

18 durable manufacturers into three portfolios based on the level of capacity utilization following

our benchmark sorting procedure. The capacity utilization spread within this subsample of durable

manufacturers amounts to 5.85% per annum, and is statistically significant. This demonstrates that

the utilization spread is also a within-sector phenomenon that is materially unrelated to the ex-ante

heterogeneous exposures of durable and nondurable manufacturers to aggregate risk.
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Table OA.3.13: Capacity utilization spread: inclusion and exclusion of major sectors

Only Durable Sector Excluding Mining & Utilities Sector

Portfolio Mean SD Mean SD

Low (L) 15.08 24.23 14.39 21.63

Medium 10.39 22.11 10.73 17.88

High (H) 9.23 23.77 9.12 20.21

Spread 5.85 19.08 5.27 17.31

(L-H) (2.13) (2.12)

The table reports the annual returns of portfolios sorted on the basis of capacity utilization, as well as the spread

between the low (L) and high (H) capacity utilization portfolios when specific sectors are included or excluded from

the sample. The left panel shows the results when the sample includes only industries that are classified as durable

goods manufacturers. The right panel shows the results when the sample excludes all mining industries and utilities.

The table reports the average value-weighted return (Mean) and standard deviation (SD) of each portfolio’s returns.

t-statistics, reported in parentheses, are computed using Newey and West (1987) standard errors. The sample period

is between July 1967 to December 2015.

Third, we examine the magnitude of the capacity utilization spread when we exclude the only

sector that heavily populates the high utilization portfolio: mining and utilities. The mining and

utilities sector is also unique in that its average level of capacity utilization over the sample period

is statistically different from that of all other industries (see Table OA.2.2). The right Panel of

Table OA.3.13 shows the results of sorting all non-mining industries into three portfolios on the

basis of capacity utilization. Excluding mining industries and utilities from the sample does not

change our baseline results. The utilization spread remains positive, yielding an average return of

about 5.3% annually, and statistically significant at the 5% level.

Fourth, in our benchmark analysis we sort industries into portfolios based on the level of each

industry’s utilization rate. Here we modify this approach by sorting industries into portfolios

based on the year-on-year growth rate, instead of the level, of utilization. Using the growth rate

removes any (potential) differences in the average level of utilization across industries. The portfolio

formation procedure follows that in Section 1.2, apart from the use of growth rates. The results are

reported in Table OA.3.14 and show that the value-weighted (equal-weighted) utilization spread is

4.80% (5.74%) per annum and is significant at the 5% level. Portfolio returns are also monotonically

decreasing in the utilization growth rate.
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Table OA.3.14: Capacity utilization spread: sorting on growth rates

Value-weighted Equal-weighted

Portfolio Mean SD Mean SD

Low (L) 14.49 21.41 11.53 21.92

Medium 10.05 16.63 7.78 17.59

High (H) 9.69 20.59 5.79 20.93

Spread 4.80 16.93 5.74 16.41

(L-H) (2.00) (2.45)

The table reports the annual returns of three portfolios sorted on the basis of capacity utilization growth, as well

as the spread between the low (L) and high (H) utilization growth portfolios. The construction of the portfolios is

identical to the benchmark analysis, except that portfolios are sorted on the basis of the growth rate of utilization

rather than the level of utilization. The growth rate of utilization is measured between March of years t and t − 1.

Mean refers to the average annual return and SD denotes the standard deviation of annual raw returns, and the

parentheses report t-statistics computed using Newey and West (1987) standard errors. The portfolios are formed at

the end of each June from 1968 to 2015 and are rebalanced annually, with portfolio returns spanning July 1968 to

December 2015

Lastly, we complement the empirical evidence above with a theoretical exercise in Section

OA.4.5. We consider the implications of ex-ante parameter heterogeneity on the model-implied uti-

lization premium. Parameter heterogeneity captures any cross-sectoral differences in depreciation,

adjustment costs, or elasticity of depreciation to utilization. We show that such heterogeneities

contribute only marginally to the utilization premium.

OA.3.8 Robustness: firm-level capacity utilization

For robustness, we construct a proxy for the unobservable capacity utilization rate at the firm-

level. First, for each industry, we project the utilization rate of industry j at time t (CUj,t) on salient

industry-level production-related characteristics, contained in the vector Xj,t. For the dependent

variable, CUj,t, we use either the raw industry utilization or industry-demeaned utilization rate.

The latter approach ensures that the fitted value of this projection is not affected by fixed differences

in average utilization across industries. The choice of Xj,t is motivated by the model in Section

2. We use the logarithms of size and book-to-market, the investment-to-capital ratio, IVOL, and

TFP.35 The regression is

CUj,t = βj,0 + βjXj,t + εj,t (OA.3.7)

By estimating this projection separately for each industry, the relation between utilization

and the characteristics, as measured by β̂j , is specific to industry j. The average R2 of this

projection across industries is sizable at 33%, suggesting that the regressors well-span utilization

at the industry level.

35Our empirical analysis shows that utilization affects the exposure of firms to aggregate productivity. Consequently,
for Xj,t we choose firm-level variables that are known to also correlate with firms’ exposure to this factor. In
particular, Zhang (2005) shows that aggregate productivity exposure interacts with book-to-market and investment.
Imrohoroglu and Tuzel (2014) establish the relation between firm-level TFP and aggregate productivty. Ai and
Kiku (2016) document that idiosyncratic volatility serves as proxy for underlying growth options, whose riskiness
depends on aggregate consumption. Importantly, in untabulated results we verify that our findings are robust to
either removing particular characteristics (e.g., IVOL) or adding additional characteristics (e.g., hiring rates).
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Second, the proxy for the utilization rate of a firm i that belongs to industry j at time t

(denoted ĈU i,j,t) is obtained by combining the estimated slope coefficients for industry j, obtained

via equation (OA.3.7), with the observable characteristics of firm i, denoted Xi,j,t,

ĈU i,j,t = β̂j,0 + β̂jXi,j,t. (OA.3.8)

This procedure allows the utilization proxy to vary between firms within the same industry. We

use the firm-level utilization proxy to sort firms into portfolios as per Section 1.2, and report the

results in Table OA.3.15.

Table OA.3.15: Capacity utilization spread: proxy for firm-level utilization rates

Utilization De-meaned utilization

Portfolio Mean SD Mean SD

Low (L) 12.65 19.92 11.92 17.67

Medium 11.98 15.93 11.80 16.50

High (H) 7.66 21.58 6.77 22.08

Spread 4.98 15.39 5.14 15.48

(L-H) (2.32) (2.02)

The table reports the annual value-weighted returns of portfolios sorted on the basis of estimated firm-level capacity

utilization rates, as well as the spread between the low (L) and high (H) utilization portfolios. The table reports the

average value-weighted return (Mean) and standard deviation (SD) of each portfolio’s returns, and all portfolios are

formed by following the procedure described in Section 1.2. t-statistics, reported in parentheses, are computed using

Newey and West (1987) standard errors. The sample period is between July 1967 to December 2015.

The table shows that the firm-level utilization premium is about 5% per annum and statistically

significant. Similar results are obtained using both raw or industry-demeaned utilization rates

in projection (OA.3.7) (i.e., excluding industry fixed effects). The relation between firm-level

utilization and average returns also remains monotonically decreasing in either case. The findings

above help to further illustrate that the benchmark utilization premium is not driven by ex-ante

heterogeneity across industries.

OA.3.9 Supplemental tables

Table OA.3.16: Transition matrix of constituents between capacity utilization portfolios

Portfolio in Portfolio in year t+ 1

year t Low Medium High

Low 0.746 0.254 0.000

Medium 0.033 0.939 0.027

High 0.011 0.232 0.758

The table shows the probability of an industry sorted into portfolio i ∈ {Low, Medium, High} in year t, where i

is the row index, being sorted into portfolio j ∈ {Low, Medium, High} in year t + 1, where j is the column index.

The transition probabilities are computed using annual capacity utilization data from June 1967 to December 2015.

Industries are sorted into portfolios at the end of each June following the portfolio formation procedure described in

Section 1.2.
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Table OA.3.17: Capacity utilization spread: decile portfolios

Panel A: Portfolio returns Panel B: Market betas

Portfolio Mean SD β t(β)

Low (L) 13.64 21.23 1.24 (11.74)

2 12.74 18.84 1.16 (14.51)

3 10.89 17.81 1.14 (14.00)

4 11.39 19.48 1.17 (17.34)

Medium 10.56 19.97 1.20 (11.78)

6 9.26 18.35 1.16 (14.51)

7 10.65 18.07 1.08 (12.71)

8 9.02 18.69 1.07 (11.39)

9 9.94 17.54 1.03 (13.57)

High (H) 7.96 20.22 1.05 (11.59)

Spread 5.67 17.71 0.19 (2.96)

(L-H) (2.31)

The table reports annual returns (Panel A) and CAPM betas (Panel B) of portfolios sorted on the basis of capacity

utilization, as well as the spread between the returns and risk exposures of the low (L) and high (H) capacity

utilization portfolios. The construction of the portfolios is identical to the benchmark analysis, except for the portfolio

breakpoints used. Specifically, we sort the cross-section of industries into portfolios based on decile breakpoints. The

mean in Panel A refers to the average annual return, obtained by multiplying the average monthly return by 12, and

SD denotes the annualized standard deviation of monthly returns. Parentheses report Newey and West (1987) t-

statistics. All portfolios are formed at the end of each June and are rebalanced annually. The sample is from July 1967

to December 2015. The risk exposures in Panel B correspond to β1 from the regression Retei,t = β0+β1MKTRFt+εi,t,

where Retei,t is the value-weighted excess return of a portfolio and MKTRFt is the excess market return, a proxy of

aggregate productivity. Parentheses report Newey and West (1987) t-statistics. All portfolios are formed at the end

of each June and are rebalanced annually. The sample is from July 1967 to December 2015.
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Table OA.3.18: Fama-MacBeth regressions: industry-level

Panel A: Annual Panel B: Monthly

(1) (2) (3) (4)

βCU -1.77 -1.52 -0.15 -0.14

(-2.16) (-2.01) (-2.04) (-1.95)

Sector FE - Yes - Yes

Controls Yes Yes Yes Yes

R2 0.475 0.540 0.459 0.533

The table reports the results of Fama-MacBeth regressions in which future industry-level excess returns are regressed

on current utilization rates and industry-level controls. We run the following cross-sectional regression in which the

dependent variable is either an industry’s annual excess return from the start of July in year t to the end of June in year

t+1 (Panel A), or an industry’s monthly excess return from the end of month t to the end of month t+1 (Panel B). The

independent variables are the utilization rate and a vector of the industry’s characteristics (controls), Xt measured at

the end of June in year t (Panel A) or every month if available (Panel B): Ri,t→t+1 = β0 +βuui,t +β′
tXi,t + εi,t→t+1.

The controls Xt include total factor productivity (TFP), the hiring rate (HIRE), the natural investment rate (I/K),

capacity overhang (OVER), the ratio of organization capital to assets (OC / AT), the natural logarithm of the market

value of equity (ln(ME)), the natural logarithm of the book-to-market (ln(B/M)) ratio, and lagged annual return

(RETt−1). Here, all industry-level characteristics (other than CU) are calculated as the average characteristic across

all firms assigned to a given industry at each point in time. After running these cross-sectional regressions we compute

the time-series average of each element of the vectors the estimated slope coefficients. Parenthesis report Newey and

West (1987) t-statistics. Columns 1 to 4 show the results when all characteristics are used in multivariate regressions,

while Columns 2 and 4 also including sector fixed effects. Each control variable is standardized by dividing it by its

unconditional standard deviation. The table also report the time-series average of the R2 obtained from each set of

cross-sectional regressions.
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Table OA.3.19: Fama-MacBeth regressions: excluding small and microcap firms

(1) (2) (3)

CU -1.56 -1.52 -2.02

(-1.92) (-2.26) (-3.81)

TFP 1.27 1.20

(2.84) (2.65)

HIRE -4.20 -4.15

(-2.72) (-2.84)

I/K -2.30 -2.22

(-2.17) (-2.36)

OVER -3.62 -3.83

(-2.98) (-3.32)

OC / AT 0.80 0.62

(0.65) (0.65)

ln(ME) -0.18 -0.32

(-0.17) (-0.29)

ln(B/M) 3.71 3.69

(4.18) (4.27)

RETt−1 -0.34 -0.29

(-0.22) (-0.21)

Sector FE - - Yes

R2 0.012 0.119 0.147

The table reports the results of Fama-MacBeth regressions in which future excess returns are regressed on current

characteristics. In each year t we first identify firms in our sample that have a market capitalization rate less than

the median market capitalization at that point in time, and remove these firms from the cross-section of firms (i.e.,

we restrict our focus to firms with large market capitalizations). We then run the following cross-sectional regression

in which the dependent variable is a firm’s annual excess return from the start of July in year t to the end of June

in year t + 1, and the independent variables are a vector of the firm’s characteristics, Xt measured at the end of

June in year t: Ri,t→t+1 = β0+β′
tXi,t+ εi,t→t+1 ∀t ∈ {1967, . . . , 2014}. The characteristics considered are capacity

utilization (CU), total factor productivity (TFP), the hiring rate (HIRE), the natural investment rate (I/K), capacity

overhang (OVER), the ratio of organization capital to assets (OC / AT), the natural logarithm of the market value of

equity (ln(ME)), the natural logarithm of the book-to-market (ln(B/M)) ratio, and lagged annual return (RETt−1).

After running these cross-sectional regressions we compute the time-series average of each element of the vectors the

estimated slope coefficients, {β̂t}2014t=1967. Each column reports the average slope coefficients for the characteristics

of interest. Parenthesis report Newey and West (1987) t-statistics. Column 1 shows the results when the capacity

utilization rate is the only predictor, while Columns 2 and 3 show the results when all characteristics are used

in multivariate regressions. Column 3 also including sector fixed effects. Each control variable is standardized by

dividing it by its unconditional standard deviation. The table also report the time-series average of the R2 obtained

from each set of cross-sectional regressions. The first regression is run in 1967 and the last regression is run in 2014,

when the TFP data becomes unavailable.
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Table OA.3.20: Distinction between the utilization premium and other spreads: projec-
tion evidence

Other spread BE/ME TFP I/K ME Profit. MOM IVOL

Panel A: Empirical results

αData 5.11 5.40 4.74 5.39 6.33 7.06 6.76

(2.04) (2.20) (1.99) (2.21) (2.63) (2.84) (2.72)

Panel B: Model-implied results

αModel 4.90 6.64 3.90 6.58 - - -

The table considers the distinction between the utilization premium and other spreads in both the data (Panel A)

and the model (Panel B) through the lens of time-series regressions. Specifically, each panel reports the results of a

univariate time-series regression in which returns associated with the utilization premium are projected on returns

associated with another spread. The regression we estimate is given by RCU
t = α+βROther

t +εt, where R
CU
t represents

the utilization premium in month t and ROther
t represents the return associated with another spread in the same

month. The other spreads we consider are: (i) the value premium (BE/ME), (ii) the productivity premium (TFP),

(iii) the investment premium (I/K), (iv) the size effect (ME), (v) the profitability premium, (vi) the momentum effect,

and (vii) the idiosyncratic volatility effect. The time-series regressions in Panel A are estimated using monthly data

between July 1967 and December 2015, and then annualized. Parentheses report Newey and West (1987) t-statistics.

The time-series regressions in Panel B are estimated using model-implied data from population-sample simulations

of our extended models in Section OA.5, that feature two aggregate shocks (aggregate productivity and investment

efficiency). Specifically, BE/ME, I/K and ME spreads are implied by the model in Section OA.5.1, while the TFP

premium is implied by the model in Section OA.5.2. Panel B then reports the values of the model-implied alphas

obtained by estimating the aforementioned regressions.

Table OA.3.21: Return predictability using utilization and productivity proxies-

Panel A: Industry-level Panel B: Firm-level

CU -1.85 -2.28 -2.34 -1.69 -2.30 -2.55

(-1.79) (-2.06) (-2.24) (-2.09) (-2.69) (-3.10)

ln (Sales / Capital) -0.14 -0.09 0.50 0.21

(-0.43) (-0.30) (0.25) (0.10)

ln (Sales / Employees) 0.02 0.02 2.82 3.19

(1.34) (1.31) (2.90) (3.19)

R2 0.126 0.104 0.170 0.027 0.030 0.043

The table reports the results of Fama-MacBeth regressions in which future industry-level (Panel A) or firm-level

(Panel B) excess returns are regressed on current utilization rates and productivity proxies. We run the following

cross-sectional regression in which the dependent variable is either an industry’s annual excess return from the start

of July in year t to the end of June in year t + 1 (Panel A), or a firm’s annual excess return from the start of July

in year t to the end of June in year t + 1 (Panel B): Ri,t→t+1 = β0 + β′
tXi,t + εi,t→t+1 ∀t ∈ {1967, . . . , 2014}.

Here, the independent variables Xt are the utilization rate, the logarithmic ratio of sales to physical capital, and

the logarithmic ratio of sales-to-employees, proxies for productivity. The industry-level characteristics (other than

CU) in Panel A are calculated as the average characteristic across all firms assigned to a given industry at each

point in time. After running these cross-sectional regressions we compute the time-series average of each element of

the vectors the estimated slope coefficients. Parenthesis report Newey and West (1987) t-statistics. The table also

report the time-series average of the R2 obtained from each set of cross-sectional regressions. Each control variable

is standardized by dividing it by its unconditional standard deviation.
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OA.4 Additional theoretical results: Asset pricing

OA.4.1 Discussion of the model’s assumptions

Countercyclical price of risk. The model assumes a countercyclical market price of risk to

break the symmetry between high and low utilization firms in the presence of symmetric convex

adjustment costs. While we do not model a micro foundation for this cyclicality, this counter-

cyclicality can arise in a general equilibrium setup by assuming habit preferences or time-varying

volatility that is countercyclical (e.g., Bansal and Yaron (2004)).

Fixed cost. The model features a real option to disinvest. While we could, in principle, also

introduce a fixed cost for expanding capacity to the model (and make positive investment a real

option also), we refrain for doing so to keep the dimensionality of the model’s parameters low.

Since the prior literature emphasizes that the adjustment costs of disinvestment are larger than

those of investment (e.g., Zhang (2005)), our model captures this notion in a parsimonious manner.

However, we relax this assumption and use a more comprehensive adjustment cost function in

Section OA.6.4. We also provide an extensive discussion on the role of the disinvestment option

under Section OA.4.3. There, we show that the non-convex adjustment cost breaks the link between

utilization and investment margins.

Sources of risk. Motivated by the empirical evidence in Sections 1.4, our framework relies on

exposures to a single priced state variable: productivity. Despite having only a single aggregate

shock, the model can generate a distinct value premium and utilization premium, as shown in

Section OA.4.2. The distinction arises from the real option nature of investment in the model.

This real option to disinvest creates a substitution between a firm’s utilization and investment

policies, and also introduces additional degrees of non-linearity to model. However, we relax the

assumption of a single aggregate shock in Section OA.5.1. Introducing an additional priced source

of risk enhances the quantitative distinction between the utilization and value premia.

Wages and labor. Lastly, we demonstrate the importance of wages and flexible labor in

the model. Our wage specification is shared with Jones and Tuzel (2013), Belo et al. (2014), and

Imrohoroglu and Tuzel (2014), among many other studies. As in the aforementioned studies, our

model does not feature a fixed cost that is paid unconditionally every period as in Zhang (2005)

(thereby creating operating leverage). In contrast, our model relies on the labor margin which

leads to a similar amplification of risk. To see this, consider equation (19). Utilization depends on

aggregate productivity with the elasticity Ax that rises when ω < 1. That is, the optimal choice

of utilization (of all firms) is sensitive to changes in aggregate productivity though the dispersion

in firms’ choices of labor. This influences the risk exposures of firms’ to aggregate productivity

without explicitly introducing operating leverage to the model.

Table OA.4.1 show the model’s sensitivity to both flexible labor and ω. Lower (higher) ω has

a negligible effect on the utilization premium, but increases (decreases) the equity premium. For

example, the equity premium changes by 0.82% per annum when we switch between ω = 0 and

ω = 1. In contrast, the utilization premium only changes by about 0.20% per annum. This is

in line with equation (19): lower ω increases the risk for all firms. In line with Imrohoroglu and

Tuzel (2014), we solve a model with fixed labor (that is, with Li,t = 1 for all firms). The resulting

utilization premium is considerably smaller (about 1.35% per annum). Thus, flexible labor (or fixed

costs of production) are required to create sufficient dispersion in risk exposures across firms.
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Table OA.4.1: Model-implied moments across alternative calibrations for labor and
wages

Time-series Cross-sectional Risk premia

Row Model STS (ik) ρ1 (ik) σCS (ik) SCS (ik) E
[
RM

]
E
[
RCU

]
Data

(1) 0.67 0.52 0.16 1.89 6.28 5.67

Baseline

(2) 0.65 0.58 0.11 1.19 5.13 5.12

Different ω

(3) Low (ω = 0.00) 0.67 0.59 0.11 1.17 5.55 5.08

(4) High (ω = 1.00) 0.55 0.56 0.10 1.26 4.73 5.28

Fixed labor

(5) -1.87 0.75 0.01 0.23 7.90 1.35

The table reports model-implied population moments related to the time-series and cross-section of investment rates,

as well as risk premia, under various calibrations that perturb wages and labor. The table reports the time-series

skewness (STS (ik)) and the first-order autocorrelation (ρ (ik)) of firm-level investment rates and the cross-sectional

dispersion (σCS (ik)) and skewness (SCS (ik)) of investment rates. In addition, the table also reports the equity

premium ((E
[
RCU

]
)) and the capacity utilization premium (E

[
RCU

]
) obtained by sorting the cross-section of model-

implied returns association with each calibration on capacity utilization rates. These risk premia are expressed as

an annualized percentage. Each alternative calibration is identical to the benchmark calibration in all ways except

for altering the sensitivity of wages to aggregate productivity (ω) or fixing the quantity of labor available to each

firm. All moments are based on a simulations of 1,000 firms over 40,0000 periods (years). Finally, the top row of the

table reports the empirical counterpart of each moment, while the second row of the table reports the value of each

moment in our benchmark calibration and model.

OA.4.2 Model-implied distinction between utilization and book-to-market (or

investment)

This section discusses the distinction between the utilization premium and the value premium

(i.e., investment-related premia) within our benchmark model. To illustrate this point, we report

the results of a conditional portfolio double sort of model-implied stock returns on book-to-market

ratios and capacity utilization rates. The portfolio formation procedure follows the discussion in

Section 3.1. The results of the analysis are reported in Table OA.4.2 and show that the utilization

premium also exists within book-to-market portfolios.

Table OA.4.2 shows the model produces a sizable utilization premium within book-to-market

portfolios. There are two reasons why our single-shock model is capable of simultaneously gen-

erating a spread along these two separate dimensions. First, despite the comovement between

investment, utilization, and book-to-market in the model (all relate to Tobin’s q), the correlation

between the latter two margins is not perfect. Notably, our model features a real option (i.e., the

fixed cost f) that induces “wait and see” periods of investment inaction. In these “wait and see”

periods of investment inaction, utilization and investment do not comove as utilization substitutes

the decision to exercise the costly real option to shed capital. Second, while both utilization and

book-to-market are linked to the same aggregate shock, these relations to the aggregate shock are

non linear because of time-varying betas. Both margins vary over time, and as they do, both
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Table OA.4.2: Conditional double sort in the model

Low CU Medium CU High CU Spread (L-H)
Low B/M 6.42 4.96 3.48 2.95
Medium B/M 9.28 7.34 5.69 3.59
High B/M 10.02 8.99 7.60 2.42

The table shows the model-implied equal-weighted returns obtained from a conditional double-sort procedure in which
the control variable (i.e., the first dimension sorting variable) is the book-to-market ratio and the second dimension
sort variable is the capacity utilization rate. The portfolios are constructed as follows. First, in each period firms
are sorted into three portfolios based on the cross-section of book-to-market ratios from period t− 1 using the 20th

and 80th percentiles of the cross-sectional distribution of book-to-market ratios. Next, within each book-to-market
portfolio, firms are further sorted into three additional portfolios on the basis of capacity utilization in period t − 1
using the 20th and 80th percentiles of the cross-sectional distribution of capacity utilization rates. This procedure
produces nine portfolios that are held for one period, and are then rebalanced. The table also shows the capacity
utilization spread associated with each book-to-market portfolio. Here, model implied moments are based on one
simulation of the model that features 1,000 firms and 40,000 periods (years.)

margins change firms’ conditional exposures to aggregate productivity shocks.

To further illustrate the distinction between low/high utilization firms and high/low B/M firms

in our benchmark single-shock model, Figures OA.4.1 and OA.4.2 plot how firms sorted into portfo-

lios according to their utilization rates and B/M ratios differ along two key dimensions: the natural

logarithm of their capital stocks (represented by the x-axis and denoted by K) and the level of

their idiosyncratic productivities (represented by the y-axis and denoted by Z). We focus on these

two variables because they represent the two firm-level state variables in our model.

We produce these figures in three steps. First, we sort the cross-section of model-implied firms

in each year t into portfolios based on either their utilization rates or their book-to-market ratios in

year t−1. When forming these portfolios we use the 10th and 90th percentiles of the cross-sectional

distribution of each firm-level characteristic as portfolio breakpoints. This mimics the portfolio

sort procedure we implement empirically. Next, we compute the mean value of both the capital

stock and the idiosyncratic productivity of all firms assigned to each portfolio. Finally, we produce

scatterplots and heat maps that visually describes the level of capital and idiosyncratic productivity

for each key portfolio on the portfolio formation dates. Each plot is obtained from a model-implied

population simulation that spans 40,000 periods and 1,000 firms.

The scatterplots in the top panel of Figure OA.4.1 display the properties of the low utiliza-

tion portfolio and the high B/M portfolio. The figure shows that while both low utilization and

high B/M firms tend to have large capital stocks and low idiosyncratic productivities, there are

differences between the two portfolios in the magnitude of these two margins. In particular, low

utilization firms are associated with low idiosyncratic productivity (Z) regardless of their capital

stocks, whereas there is a substitution between Z and K for high book-to-market (i.e., value) firms.

The idiosyncratic productivity of a value firm can be higher than that of a low utilization firm

provided the value firm’s capital stock is sufficiently small (i.e., low K). Similarly, the bottom

panel of the figure shows the types of firms assigned to the high utilization and low B/M portfolios.

Once again, high utilization firms are often not synonymous with low B/M firms.

Notably, a firm’s exposure to aggregate productivity shocks is ultimately a function of the firm’s

underlying state variables Z and K. By projecting the cross-section of firms onto the (Z,K) plane,

these plots help to illustrate why our single-shock model is able to generate both a utilization
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Figure OA.4.1: Utilization and B/M sorted firms: Scatter plots of Z and ln (K)

The figure reports scatterplots that display the average capital stock (represented by the x-axis) and the average
level of idiosyncratic volatility (represented by the y-axis) of model-implied firms sorted into portfolios on the basis
of their capacity utilization rates and book-to-market ratios. We produce these figures in two steps. First, we sort
the cross-section of model-implied firms in each year t into portfolios based on either their utilization rates or their
book-to-market ratios in year t − 1. When forming these portfolios we use the 10th and 90th percentiles of the
cross-sectional distribution of each firm-level characteristic as portfolio breakpoints. This mimics the portfolio sort
procedure we implement empirically. Second, we compute the mean value of both the capital stock and the idiosyn-
cratic productivity of all firms assigned to each portfolio. Each plot is obtained from a model-implied population
simulation that spans 40,000 periods and 1,000 firms.

premium and value premium. This is because the types of firms that are sorted into the low

utilization portfolio are often quite different from the types of firms that are sorted into the high

B/M portfolio. As such, these portfolios have visually different exposures to aggregate productivity

risk and consequently earn different expected returns. This ultimately gives rise to relatively distinct

utilization and investment premia within our framework.

While the former scatterplots show a number of distinct differences between the firms assigned

to the various utilization- and B/M-sorted portfolios, the large number of overlapping points on

these diagrams can mask the underlying distributions of firms in the economy. To address this point,

Figure OA.4.2 plots heat maps that display the types of firms assigned to the key portfolios, along

with associated the frequencies of portfolio membership as a function of Z and K. The contours

of the low (high) utilization (B/M) portfolios are almost non-overlapping when we account for the

frequency of portfolio membership. This once again highlights how a value firm in our single-shock

model is not necessarily synonymous with a low utilization firm.
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Figure OA.4.2: Low utilization versus value firms: heat maps of Z and ln (K)
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The figure reports heat maps that display the average capital stock (represented by the x-axis) and the average level
of idiosyncratic volatility (represented by the y-axis) of model-implied firms sorted into portfolios on the basis of
their capacity utilization rates and book-to-market ratios. We produce these figures in two steps. First, we sort
the cross-section of model-implied firms in each year t into portfolios based on either their utilization rates or their
book-to-market ratios in year t − 1. When forming these portfolios we use the 10th and 90th percentiles of the
cross-sectional distribution of each firm-level characteristic as portfolio breakpoints. This mimics the portfolio sort
procedure we implement empirically. Second, we compute the mean value of both the capital stock and the idiosyn-
cratic productivity of all firms assigned to each portfolio. Each plot is obtained from a model-implied population
simulation that spans 40,000 periods and 1,000 firms.

OA.4.3 The role of non-convex disinvestment costs

When the fixed cost of disinvestment is positive (f > 0), the decision to shed capital becomes

a real option. This means that firms may not necessarily want to sell their capital immediately

when a negative shock hits the economy. This is because there are multiple periods of investment

inaction in which firms “want and see” if productivity will recover before committing to the partially

irreversible decision to shed physical capital. It is these periods of investment inactions that show

the role of variable capacity utilization as serving as a substitute for selling capital.

Consequently, the fixed cost of disinvestment creates economically important distinctions be-

tween capital utilization and capital investment. Namely, a positive disinvestment cost implies

that (i) utilization leads investment during economic downturns, an empirical observation that is

commonly used by forecasters, and (ii) the utilization premium features distinction from investment-

based spreads, even in a single-shock model. We discuss each role of f > 0 in turn.

Utilization as a leading economic indicator. Consider Figure OA.4.3 that displays

the (normalized) paths of physical investment and capacity utilization for a model-simulated firm
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Figure OA.4.3: Substitution between investment and utilization
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The figure displays the (normalized) paths of physical investment and capacity utilization for a model-simulated firm
around an economic downturn.

around an economic downturn. While this representative firm slightly reduces its physical invest-

ment rate between periods two and three, its physical investment rate is unchanged between periods

three and eight. This is because the firm is stuck in a “wait and see” period of investment inaction

while the firm decides whether to exercise its costly real option to shed capital. When the firm

ultimately commits to shed physical capital in period nine, its investment rate drops sharply before

slightly increasing in period 11. Overall, the firm’s investment policy is characterized by a lengthy

period of investment inaction followed by a “lumpy” decision to disinvest capital.

In contrast, the firm’s choice of utilization drops substantially from period two to period six and

therefore predicts the sharp disinvestment of physical capital that is only observed in period nine.

Moreover, the firm’s utilization rate continues to vary over time even while its physical investment

rate is fixed between periods three and eight. From periods two to eight, the lower utilization rate

substitutes the firm’s investment decision for the purpose of smoothing its dividends. That is, the

lower utilization rate implies a lower depreciation that, all else equal, raises the firm’s dividend.

This lower depreciation rate has the same impact on the firm’s dividends as selling machines.

The fact that capacity utilization leads investment is a prominent empirical regularity. For

instance, the Federal Reserve Board often cites the capacity utilization rate as serving as a useful

predictor of output (Koenig et al., 1996) and other business cycle fluctuations (Corrado and Mattey,

1997). This leading behavior would be difficult to observe in a model without non-convex adjustment

costs and real options. Moreover, without the substitution between investment and utilization that

is induced by the real option to disinvest, the firm’s investment-related decisions would be too
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Table OA.4.3: Utilization premium within B/M-sorted portfolios: the role of f

Panel A: f > 0

Low CU Medium CU High CU Spread (L-H)
Low B/M 6.42 4.96 3.48 2.95
Medium B/M 9.28 7.34 5.69 3.59
High B/M 10.02 8.99 7.60 2.42

Panel B: f = 0

Low CU Medium CU High CU Spread (L-H) % change
Low B/M 6.97 6.35 5.69 1.28 56.61%
Medium B/M 8.17 7.30 6.83 1.33 62.95%
High B/M 8.95 8.24 7.89 1.06 56.20%

The table reports the results of conditional portfolio double sorts that construct the utilization premium within
book-to-market sorted portfolios using our benchmark model from Section 2 with the fixed cost of disinvestment
(i.e., f > 0) in Panel A and without the fixed cost of disinvestment (i.e., f = 0) in Panel B. The portfolio sorts
in each panel are conducted as follows. First, we simulate a cross-section of 1,000 model-implied firms for 40,000
time periods. Then, we then conduct a portfolio double sort in which we first sort the cross-section of firms on
the basis of book-to-market ratios. That is, on each date t we sort the cross-section of firms into one of three
portfolios on the basis of their book-to-market ratios on date t− 1. We assign firms to these portfolios using the 20th

and 80th percentiles of the cross-sectional distribution of book-to-market ratios. Next, within each of these three
book-to-market-sorted portfolios, we further sort the cross-section of firms into one of three portfolios based on the
cross-sectional distribution of capacity utilization rates on date t − 1. Here, we use the same portfolio breakpoints
as in the previous step. This produces a series of nine portfolios that we hold for one period, at which point in time
all portfolios are rebalanced. The table then reports the average return of each portfolio, as well as the spread in
the returns between the low and high utilization-sorted portfolios. Moreover, in Panel B, we report the percentage
change between the conditional utilization premium obtained in Panel A, from the economy in which f > 0, to the
conditional utilization premium obtained in Panel B, from the economy in which f = 0.

highly correlated with utilization rates (counterfactually so).

Distinction from investment-based spreads. The real option to disinvest also introduces

a large degree of non-linearity to the production-based model in Section 2. In turn, this non-

linear relation between the fundamental aggregate productivity shock and both investment and

capacity utilization decisions allows the model to produce book-to-market and utilization spreads

that are relatively distinct despite the model only featuring a single source of risk: aggregate

productivity. Section OA.4.2 further elaborates on the economic mechanism that separates the

utilization premium and the value premium within the baseline model.

To illustrate the importance of f > 0 for this between the utilization premium and investment

premia, we start by simulating a cross-section of 1,000 model-implied firms for 40,000 time periods

in an economy that features a positive fixed cost of disinvestment. We then conduct a portfolio

double sort in which we first sort the cross-section of firms on the basis of book-to-market ratios.

That is, on each date t we sort the cross-section of firms into one of three portfolios on the basis of

their book-to-market ratios on date t − 1. We assign firms to these portfolios using the 20th and

80th percentiles of the cross-sectional distribution of book-to-market ratios. Next, within each of

these three book-to-market-sorted portfolios, we further sort the cross-section of firms into one of

three portfolios based on the cross-sectional distribution of capacity utilization rates on date t− 1.

We once again use the same portfolio breakpoints as the previous step. This produces a series of

nine portfolios that we hold for one period, at which point in time all portfolios are rebalanced.

Panel A of Table OA.4.3 reports the average annual portfolio returns associated with this
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Table OA.4.4: The role of flexible utilization for key moments: the case of f = 0

Time-series Cross-sectional Risk premia

Row Model STS (ik) ρ1 (ik) σCS (ik) SCS (ik) E
[
RCU

]
E
[
Rbm

]
Data

(1) 0.67 0.52 0.16 1.89 5.67 3.71
Baseline

(2) 0.65 0.58 0.11 1.19 5.13 3.77
Baseline without fixed cost

(3) 1.04 0.63 0.11 1.32 4.51 3.27
Baseline without utilization

(4) -0.27 0.63 0.07 0.07 - 3.00
Baseline without utilization and fixed cost

(5) 0.53 0.70 0.08 0.58 - 2.65

The table reports model-implied population moments related to the time-series and cross-section of investment rates,
as well as risk premia, under various calibrations of the model featuring no fixed disinvestment cost (f = 0). The
table reports the time-series skewness (STS (ik)), and the first-order autocorrelation (ρ (ik)) of firm-level investment
rates, as well as the cross-sectional dispersion (σCS (ik)) and skewness (SCS (ik)) of investment rates. In addition,
the table also reports the value premium (E

[
Rbm

]
) and investment premium (E

[
Rik

]
) obtained by sorting the cross-

section of model-implied returns association with each calibration on book-to-market ratios and investment rates,
respectively. These risk premia are expressed as an annualized percentage. Each alternative calibration is identical
to the benchmark calibration in all ways except for f = 0 in rows (3) to (5), and λ → ∞ in rows (4) and (5). All
moments are based on a simulations of 1,000 firms over 40,0000 periods (years). Finally, the top row of the table also
reports the empirical counterpart of each moment.

analysis. The panel indicates that even though our baseline model only features a single priced

source of risk, the model is capable of generating a utilization premium that is largely distinct

from the value premium. Notably, the utilization premium ranges from about 2.5% to 3.5% per

annum even after we condition on book-to-market ratios. While smaller than the unconditional

spread, this conditional spread falls within the empirical confidence interval. When we set f = 0

and repeat this analysis, Panel B shows that the relative magnitude of the utilization premium falls

by between 55% and 62% compared to Panel A. Moreover, a utilization premium of about 1.2% is

below the lower bound of the empirical confidence interval. The stark difference between Panels

A and B highlights the key role of non-convex disinvestment costs for separating the utilization

premium from the value premium in the context of our benchmark model.

Sensitivity to fixed disinvestment costs. Table OA.4.4 reports a sensitivity analysis to

show how the key investment-related moments and risk premia change when we switch both the

fixed cost of disinvestment and variable capacity utilization on and off. There are two key takeaways.

First, row (3) shows the unconditional level of the utilization premium remains sizable even

when f = 0. That is, without the fixed cost of disinvestment, the utilization premium falls by

0.62% (from 5.13% in row (2) to 4.51% in row (3)). This represents as 12% decline in the relative

magnitude of the utilization premium compared to the baseline model. While this decline in the

magnitude of the spread is quite sizable, the model-implied utilization spread in row (3) still falls

within the empirical confidence interval of the spread in the data.

Second, an economy with flexible utilization can improve the model’s fit to the data compared

to an economy with fixed utilization, even if there is no fixed cost of disinvestment and f = 0.

Comparing row (3) to row (5) shows that setting f = 0 but letting utilization vary helps the model

to generate a sizable value premium, holding all else constant. The value premium in row (5) is

0.62% smaller than the value premium in row (3). This indicates that fixing utilization induces the
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value premium to fall, in relative terms, by 19% compared to the economy underlying row (3). Row

(5) also shows that the cross-sectional skewness of investment is more than halved when utilization

is fixed, and investment becomes too autocorrelated compared to the data.

OA.4.4 Sensitivity analysis of the model for risk premia

Below, we numerically illustrate the intuition for the utilization spread discussed in Section 3.2.

We show the sensitivity of the spread to ingredients (1)–(3) of our model (the quadratic capital

adjustment cost, fixed cost of disinvestment, and countercyclical market price of risk, respectively).

We also show that the utilization spread is largely unaffected by perturbing the parameters govern-

ing the evolution of aggregate or idiosyncratic productivity. Table OA.4.5 presents these results,

and reports the mean value-weighted of the utilization spread. The table also reports the mean

and volatility of the equity risk premium in the model under each alternative calibration.

The results in rows (2) and (3) show that when the extent of the first friction, the quadratic

capital adjustment costs, is perturbed, the magnitudes of the utilization spread changes. As this

friction is increased in row (3), the magnitude of the utilization spread increases. With higher

adjustment costs, firms can less readily alter the level of their capital stocks, and low utilization

implies more underlying capital risk.

Row (4) considers an economy is which the second ingredient, the fixed cost of capital disin-

vestment, is removed but the remaining two frictions are held constant. The utilization spread still

exists, although its magnitude is decreased by almost 1% per annum. The decrease in the utiliza-

tion spread reflects how removing the fixed cost of disinvestment better allows firms to shed their

capital stock instead of substituting disinvestment with temporary declines in utilization. However,

the fact that the utilization spread remains sizable indicates that firms still cannot fully absorb

productivity shocks into their capital stock. Next, rows (5), (6), and (7) consider the role of the

third ingredient, the countercyclical market price of risk. In particular, row (6) illustrates how a

more countercyclical market price of risk translates into a higher equity risk premium and volatility

of aggregate market returns, as well as an increased utilization spread. This occurs because the

asymmetry between good and bad aggregate productivity is widened. Row (7) indicates that both

the equity risk premium and capacity utilization spread are severely diminished with an acyclical

market price of risk.

Rows (8) and (9) show how the utilization spread changes as the persistence of aggregate pro-

ductivity changes. The results in row (8) show that when aggregate productivity is less persistent,

the magnitude and the volatility of the equity risk premium decrease. Similarly, the mean uti-

lization premium falls slightly. The opposite patterns emerge in row (9), when the persistence of

aggregate productivity increases.

Rows (10) and (11) of the table display how the utilization premium and equity risk premium

both fall (rise) when aggregate productivity becomes less (more) volatile. The same patterns hold

true for the volatility of the equity risk premium. Importantly, in rows (8)–(11), the model implied

utilization premium changes by at most 0.45% in absolute value compared to the benchmark case,

and falls within the empirical 95% confidence interval.

Finally, rows (12) to (15) display the sensitivity of key asset-pricing moments to perturbations

in the parameters governing the dynamics of idiosyncratic productivity. The results indicate that

when the persistence (ρz) or the volatility (σz) of idiosyncratic productivity increases, the capacity
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Table OA.4.5: Model-implied capacity utilization spread across alternative calibrations
of the model

Row Model E
[
RM

]
σ
(
RM

)
E
[
RCU

]
Baseline

(1) 5.39 20.88 5.13
Different ϕ

(2) Low (ϕ = 1.40) 5.39 20.85 5.06
(3) High (ϕ = 1.60) 5.39 20.92 5.19

No fixed cost
(4) 5.72 20.43 4.51

Different γ1
(5) Low (γ1 = −8.60) 5.26 20.47 5.07
(6) High (γ1 = −9.00) 5.52 21.30 5.19
(7) Acyclical (γ1 = 0) 1.88 9.86 2.68

Different ρx
(8) Low (ρx = 0.899) 4.57 17.56 4.71
(9) High (ρx = 0.945) 6.48 24.99 5.50

Different σx
(10) Low (σx = 0.0137) 4.95 19.75 4.91
(11) High (σx = 0.0143) 5.84 22.02 5.34

Different ρz
(12) Low (ρz = 0.585) 5.58 20.89 4.87
(13) High (ρz = 0.615) 5.18 20.88 5.37

Different σz
(14) Low (σz = 0.2925) 5.54 20.87 4.88
(15) High (σz = 0.3075) 5.24 20.89 5.38

The table reports model-implied population moments under various calibrations. The table reports the equity pre-
mium (E[RM ]), the volatility of the market return (σ

(
RM

)
), and the level of the capacity utilization spread (E[RCU ]).

Each moment is reported as an annual percentage. and each alternative calibration is identical to the benchmark
calibration in all ways except for altering the specified parameter of interest. The parameters altered are the fixed
cost of disinvestment (f), the quadratic capital adjustment cost (ϕ), the cyclicality of the market price of risk (γ1),
the persistence of the aggregate productivity process (ρx), the volatility of the aggregate productivity process (σx),
the persistence of the idiosyncratic productivity process (ρz), and the volatility of idiosyncratic productivity (σz).
All moments are based on a simulations of 1,000 firms over 40,0000 periods (years).

utilization premium rises.

OA.4.5 Sectoral heterogeneity and the utilization premium

We design a simulation-based experiment to put an upper bound on how much ex-ante sectoral-

level differences (e.g., difference in adjustment costs and the flexibility of utilization across different

industries) may affect the utilization spread. Let x denote a parameter of interest, let x0 denote the

value of x in our benchmark calibration, and let N represent the number of firms in the economy.

First, we solve the model twice: once when x is doubled to xU = 2x0, and once when x is halved

to xD = 0.5x0. Next, we simulate N/2 firms implied by the model solved for each xU and xD, and

combine these two simulations into one economy of N firms. These two simulations aim to capture

extreme differences between industries in terms of parameter x. Finally, we sort the N firms on
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the basis of utilization in an identical fashion to our baseline model results. The difference between

the model-implied utilization premium here versus our benchmark quantifies an upper bound on

the effect that ex-ante heterogeneity in parameter x has on the premium.

Table OA.4.6: Capacity utilization spread: sensitivity to ex-ante heterogeneity

Hetero. in ϕ Hetero. in λ Hetero. in δk Hetero. in f

Portfolio E
[
RCU

]
β E

[
RCU

]
β E

[
RCU

]
β E

[
RCU

]
β

Low (L) 9.82 1.21 9.60 1.19 9.71 1.26 9.81 1.21

Medium 6.99 1.10 6.99 1.09 6.15 1.10 7.01 1.12

High (H) 4.52 0.97 4.23 1.01 3.60 0.97 4.50 1.01

Spread (L-H) 5.30 0.23 5.37 0.18 6.11 0.29 5.31 0.21

The Table show the model-implied capacity utilization spread when firms in the economy show ex-ante heterogeneity

in some parameter of interest x. The parameter of interest x is either ϕ, the quadratic capital adjustment costs, λ,

the elasticity of depreciation to utilization, δk, the average depreciation rate, or f , the fixed cost of disinvestment. For

each parameter, we follow the simulation procedure described in Section OA.4.5 and set N to 1,000. Each simulation

encompasses 40,000 periods, and we sort all firms on the basis of utilization in an identical fashion to Table 8. A firm

is sorted into the high (low) utilization portfolio if its level of capacity utilization is above (below) the 90th (10th)

percentile of the cross-sectional distribution of capacity utilization rates in the previous period. To compute β in the

model, the volatility of market returns in the model is scaled to match the volatility of market returns in the data.

We consider heterogeneity in four parameters: the depreciation rate, δk, elasticity of depreciation

to utilization, λ, convex adjustment cost, ϕ, and fixed disinvestment cost, f . The results are

reported in Table OA.4.6. In comparison to Panel B of Table 8, heterogeneity in ϕ, λ, δk and f

add up to 0.06%, 0.13%, 0.87% and 0.20% per annum, respectively, to the premium. Thus, ex-ante

sectoral heterogeneity only implies a marginal amplification of the model-implied utilization spread.

OA.4.6 Numerical model solution

We solve the model numerically using value function iteration. The value function and the

optimal policies implied by the firm’s maximization problem in equation (12) are solved on a

grid in a discrete state space. The grid for capital stock, K, features 501 grid points, with the

endpoints of the grid chosen to be nonbinding. The aggregate productivity process, x, and the

idiosyncratic productivity process, z, are each driven by an independent and identically distributed

normal distribution. While each of these state variables has continuous support in the model, each

variable needs to be transformed into a finite number of states to implement the numerical solution

algorithm. We use the method of Tauchen and Hussey (1991) to discretized the z process into

11 states. Because the method of Tauchen and Hussey (1991) does not work well for persistent

processes, namely those with a persistence parameter greater than 0.90, we use the method of

Rouwenhorst (1995) to discretize x into 5 states. Once the discrete state space has been constructed,

conditional expectations are computed using matrix multiplication and the firm’s maximization

problem is solved using a global search routine. All results are robust to choosing finer grids.
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OA.5 Model extensions

OA.5.1 A model with investment efficiency shocks

We extend our baseline single aggregate shock model from Section 2 to a model with two aggre-

gate shocks in order to generate distinct economic mechanisms that drive the utilization premium

and other investment-based spreads. Specifically, we introduce an aggregate “investment efficiency”

shock to our model that captures the spirit of the capital-embodied shocks in Papanikolaou (2011),

Garlappi and Song (2017), and many other studies.

Introducing these investment efficiency shocks to the model leads to periods in which the

marginal efficiency of investment is higher, meaning that investment can be transformed into capital

in a more efficient manner as in Papanikolaou (2011) and Justiniano et al. (2011). This increased

investment efficiency can arise as a result of an improvement in the quality of investment goods or

through lower frictions to the process through which investment goods are transformed into pro-

ductive capital. Justiniano et al. (2011) argue that these investment frictions can also be related

to the efficiency of the financial sector (i.e., a reduced-form financial accelerator as in Carlstrom

and Fuerst (1997)).

Consequently, investment efficiency shocks reduce the installation cost of new vintages of cap-

ital (i.e., lower adjustment costs). This means that investment efficiency shocks will affect firms’

investment policies but will not affect their choices of utilization rates. Thus, introducing these

investment efficiency shocks creates a separation between the investment-related spreads (e.g., the

value premium), which are driven by these investment efficiency shocks, and the utilization pre-

mium, which remains primarily driven by aggregate productivity shocks.

Model setup. We make two main changes to the setup of our baseline model described in

Section 2.1. First, we alter the convex capital adjustment cost function to

ϕ− st
2

(
Ii,t
Ki,t

− δ (ui,t)

)2

Ki,t, (OA.5.1)

where st is the degree of aggregate investment efficiency. Note that a positive st shock decreases

the amount of adjustment costs. We assume that ϕ >> σs, such that ϕ − st is always positive.

Alternatively, we could posit that adjustment costs are proportional to ϕ/ exp(st) (see, e.g., Belo

et al. (2014)). However, we opt for the former linear specification to avoid any asymmetric effects

between positive versus negative st shocks due to convexity. The process for st follows

st+1 = ρsst + εst+1, where εst+1
i.i.d.∼ N

(
0, σ2

s

)
. (OA.5.2)

Second, we also alter the SDF to feature this priced “investment efficiency” shock

ln (Mt+1) = ln (β)− γtε
x
t+1 − SIGNS · γsεst+1 −

1

2
γ2t σ

2
x −

1

2
SIGN2

Sγ
2
sσ

2
s . (OA.5.3)

Here, γt follows identical dynamics to those described in Section 2.1 (recall equation (11)), γs is the

absolute value of the market price of investment efficiency risk, and SIGNS ∈ {−1,+1} determines

whether investment efficiency shocks carry a negative or a positive market price of risk.

Optimality conditions and model intuition. To see why the utilization and investment-

related spreads are distinct in this two-shock model, it is useful to examine the first-order conditions

associated with a firm’s choice of investment and utilization. The first-order condition for invest-
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ment is given by the Euler equation

qt = Et

[
Mt,t+1

(
∂Yi,t+1

∂Ki,t+1
− Ii,t+1

Ki,t+1
− ϕ− st+1

2

(
Ii,t+1

Ki,t+1
− δi,t

)2

+ qt+1

(
1− δi,t+1 +

Ii,t+1

Ki,t+1

))]
,

(OA.5.4)

where

qt = 1 + (ϕ− st)

[
Ii,t
Ki,t

− δi,t

]
. (OA.5.5)

The first-order condition for utilization is

0 =
∂Yi,t
∂ui,t

+ (ϕ− st)

[
Ii,t
Ki,t

− δi,t

]
∂δ (ui,t))

∂ui,t
− qt

∂δ (ui,t))

∂ui,t
Ki,t, (OA.5.6)

which can be simplified to
∂Yi,t
∂ui,t

=
∂δ (ui,t))

∂ui,t
Ki,t. (OA.5.7)

Thus, equation (OA.5.7) shows that the firm’s choice of utilization is independent of investment

efficiency as both
∂Yi,t

∂ui,t
and

∂δ(ui,t))
∂ui,t

are independent of st and Kt is predetermined.

In contrast, equation (OA.5.4) highlights that the firm’s choice of investment critically and

directly depends on the degree of investment efficiency st+1, and indirectly depends on st since

ρs > 0 (i.e., shocks to investment efficiency are persistent). When investment efficiency rises (that

is, when st increases), the cost of installing new capital falls. Thus, a positive investment efficiency

shock can be interpreted as a technological improvement that induces the firm to invest (disinvest)

more than the firm otherwise would when subject to a positive (negative) productivity shock.

Because the choice of utilization does not depend on shocks to st, the expected returns of

the utilization-sorted portfolios remain tightly related to their exposures to aggregate productivity

shocks. Thus, the utilization premium in this two-shock model will arise for the same reasons that

we obtain a utilization premium in our single-shock model (see Section 3.1). In contrast, because

a firm’s investment policy depends on the degree of investment efficiency st, the expected returns

of portfolios sorted on the basis of firms’ investment-related policies (e.g., the value premium) will

depend more heavily on the degree to which these portfolios are exposed to the investment efficiency

shocks. To see this, we can fix a firm’s investment policy and write the exposure of the ex-dividend

firm value to st shocks as

βex−div
i,s =

∂qi,t
∂st

= − Ii,t
Ki,t

. (OA.5.8)

Equation (OA.5.8) show that a firm with a positive investment rate that is expanding its

capital stock has a negative exposure to the investment efficiency shock st. Intuitively, a firm that

is expanding its capital stock has a relatively larger growth option value in the presence of capital

adjustment costs because shocks are absorbed in firm value rather than investment. Consequently,

a positive shock to st lowers capital adjustment costs (recall equation OA.5.1) and, in turn, induces

a negative valuation effect by decreasing the growth option value of the firm (in fact, there is no

growth option value in the limit where ϕ = st and qi,t = 1). The opposite logic applies to a firm

that is disinvesting, whose exposure to st shocks is negative. Moreover, a positive st shock makes

an investing firm have a higher I/K and a disinvesting firm have a lower I/K, all else equal. This

interaction effect enhances the exposure to investment efficiency shocks (in absolute value).

As growth (value) firms invest (disinvest) more heavily, they have a negative (positive) exposure

to the investment efficiency shocks. This creates a strong dependence of the value premium (and
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other investment-related spreads) on shocks to st.

Calibrating the two-shock model. Adding the “investment efficiency” shock introduces

three new parameters to the model. In the spirit of Li (2018), who proposes a unified explanation for

the value premium and the moment effect, we set the volatility of these investment efficiency shocks

to 7.25% per annum and the autocorrelation of these shocks to 0.90. We also set SIGNs to +1,

indicating that investment efficiency shocks carry a positive market price of risk. A positive market

price of risk for investment efficiency shocks is not only consistent with Li (2018), but also mirrors

an important result from Garlappi and Song (2017). Namely, investment-specific technology (IST)

shocks carry a negative price of risk if utilization is fixed, but a positive price of risk if utilization is

sufficiently flexible.36 The latter case fits our framework with time-varying utilization. We calibrate

the magnitude of the market price of this investment efficiency shock (γs) to match the book-to-

market spread in the data. Since our primary objective are to (i) establish an economically sizable

utilization premium, and (ii) establish that the utilization premium is independent from the value

premium, we emphasize that neither this choice nor the choice of any other calibration parameter

targets the utilization spread directly. Thus, the utilization premium remains a testable prediction

of our two-shock model.

In the two-shock model we opt to set the fixed cost of disinvestment (f) to zero. Recall

that in our single-shock model, part of the difference between a firm’s choice of utilization and

investment arises because of this fixed cost of disinvestment. This cost induces periods in which

firms are “waiting to see” if aggregate productivity improves before exercising their costly options

to sell capital. In the two-shock framework, the investment efficiency shock introduces a sufficient

degree of heterogeneity between firms’ investment and utilization policies. By setting the fixed

cost of disinvestment to zero, we narrow the economic distinction between the utilization and the

value premia to (i) hinge on the investment efficiency shocks (rather than on real option nature

of investment), and (ii) limit the degrees of freedom in the model. Because the model no longer

features a real option, the model is smooth and differentiable with respect to the state and control

variables. We therefore solve the model using a fourth order perturbation method in Dynare++.

We report the remaining parameters used to calibrate the two-shock model in Table OA.5.1.

These remaining parameters are either identical to, or in the close vicinity of, the parameters used

in our baseline one-shock model that are reported in Table 6.

Table OA.5.2 reports the key moments implied by the two-shock model when the investment

efficiency shocks carry either a positive or a negative market price of risk. We compare these

moments to the same moments implied by our baseline one-shock model and the data. The table

shows that the two-shock model provides a close match to the data along many dimensions related to

firm-level investment rates, aggregate utilization rates, aggregate sales growth rates, and aggregate

asset-pricing data. In particular, and compared to the single-shock model, the two-shock model

yields an improvement in the model’s fit for the second-order autocorrelation and the inter-decile

36Garlappi and Song (2017) show that a positive IST shock increases the relative productivity of the investment
sector compared to the consumption sector, and hence diverts labor away from consumption firms and into investment
firms. This will, on the one hand, drop the supply of labor in the consumption sector and reduce the amount of the
consumption good that is available, increasing the marginal utility of households. On the other hand, if utilization
is flexible, then the consumption sector can offset the decline in labor by increasing the utilization of capital (which
becomes relatively cheaper), thereby producing more of the consumption good. This decreases the marginal utility
of the household. If capital utilization is sufficiently flexible, the second effect more than offsets the negative effect
of labor diverting to the investment sector and results in a positive price of risk.
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Table OA.5.1: A model with aggregate investment efficiency shocks: calibration

Symbol Description Value

Stochastic processes
ρx Persistence of aggregate productivity 0.922
σx Conditional volatility of aggregate productivity 0.014
ρz Persistence of idiosyncratic productivity 0.700
σz Conditional volatility of idiosyncratic productivity 0.150
ρs Persistence of capital efficiency 0.900
σs Conditional volatility of capital efficiency 0.073
β Time discount factor 0.988
γ0 Constant price of aggregate productivity risk 2.175
γ1 Time-varying price of aggregate productivity risk -89.250
γs Time-varying price of capital efficiency risk 2.000

Technology
αk Capital share 0.333
αl Labor share 0.667
θ Returns to scale of production 0.900
δk Fixed capital depreciation rate 0.080
λ Elasticity of marginal depreciation 2.350
ω Sensitivity of wages to aggregate productivity 0.200
ϕ Adjustment cost parameter 0.653

The table reports the model parameters for the model extension that features two aggregate priced sources of risk:
aggregate productivity shocks and investment efficiency shocks.

range of investment, and the volatility of market returns. Most moments are largely identical when

SIGNs = 1 compared to when SIGNs = −1, although the equity premium is about 0.2% per

annum larger in the former case (which is our benchmark calibration of this two-shock model).

Model-implied spreads. As a first step, we check whether the model produces both a

sizable utilization premium and a sizable value premium. Using model-simulated data, we sort the

cross-section of firms into three univariate portfolios on the basis of either capacity utilization rates

or book-to-market ratios. Here, our portfolio formation procedure follows the benchmark approach

used in Section 1.2 of the main text. That is, in each period t, we sort firms into portfolios on the

basis of the cross-sectional distribution of the characteristic of interest in period t − 1. We then

hold each of these portfolios for one period, at which point in time all portfolios are rebalanced.

Table OA.5.3 reports the results of these univariate portfolio sorts in the two-shock model, and

shows that the model produces both a sizable utilization premium and a sizable book-to-market

spread. The utilization (book-to-market) spread is 6.40% (3.82%) per annum when SIGNs = 1,

while the utilization (book-to-market) spread is 6.52% (3.05%) per annum when SIGNs = −1.

Two differences between the case of SIGNs = 1 (our benchmark) and the case of SIGNs = −1

are worth noting. First, the value premium is sensitive to the price of risk of the investment efficiency

shocks. If these shocks carry a positive price of risk (SIGNs = 1), then the value premium matches

the data. In contrast, if these shocks carry a negative price of risk (SIGNs = −1), then the

premium shrinks by 20% (in relative terms) from 3.82% per annum to 3.05% per annum. This

findings is consistent with the model’s optimality condition for investment in equation (OA.5.4)

and the ensuing discussion that shows that growth (value) firms have a negative (positive) exposure

to st shocks. When SIGNs = 1, growth firms hedge the investment efficiency risk and command a

lower risk premium.
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Table OA.5.2: A model with aggregate investment efficiency shocks: model-implied
moments versus data

Benchmark
Variable Data Model SIGNs = 1 SIGNs = −1

Vol. of investment rate (time-series) 0.14 0.14 0.14 0.15
Vol. of investment rate (cross-sectional) 0.16 0.11 0.12 0.12
AC(1) of investment rate 0.52 0.58 0.56 0.57
AC(2) of investment rate 0.26 0.38 0.28 0.29
Inter-decile range of investment rate 0.32 0.22 0.30 0.30
Vol. of aggregate capacity utilization level 4.09 4.13 4.02 4.19
AC(1) of aggregate capacity utilization level 0.65 0.92 0.93 0.94
Vol. of aggregate sales growth 6.58 7.51 7.03 7.12
AC(1) of aggregate sales growth 0.46 0.40 0.40 0.41
Real risk-free rate 1.19 1.21 1.15 1.15
Excess market return 6.28 5.39 4.05 3.84
Volatility of excess market return 17.20 20.88 17.11 17.83

The table shows model-implied moments alongside their empirical counterparts, computed using data from 1967
to 2015. The column “Benchmark model” reports the moments implied by our single-shock benchmark model
from Section 2 that does not include aggregate investment efficiency shocks. In contrast, the column SIGNs = 1
(SIGNs = −1) refers to moments implied by the two-shock model in which the investment efficiency shocks carry a
positive (negative) market price of risk.

Second, the utilization premium is materially unchanged when the market price of risk of

the st shocks turns negative. Specifically, the utilization premium with SIGNs = 1 is only 1%

smaller (in relative terms) that the utilization premium when SIGNs = −1. This finding is once

again consistent with the model’s optimality conditions that show that the choice of utilization

is independent from the investment efficiency shocks (recall equation OA.5.7). The fact changing

SIGNs to a negative value has a considerable effect on the value premium but only a negligible

effect on the utilization premium provides an early indication that the two spreads are relatively

distinct. Comparing the drivers of the two spreads also shows that the utilization premium is more

closely tied to aggregate productivity risk, whereas the value premium (and other investment-related

spreads) is more closely tied to investment efficiency risk. We verify this intuition below.

Distinction between the utilization premium and investment-related spreads. To

demonstrate the distinction between the value and utilization premia we begin by implementing

portfolio double sorts using model-simulated returns. Table OA.5.4 confirms that we continue to

obtain a sizable utilization premium even if we control for book-to-market ratios. We establish

this fact in three steps. First, in each period t, we control for book-to-market ratios by sorting the

cross-section of model-implied firms into three portfolios on the basis of their book-to-market ratios

in period t − 1. Here, we use the 20th and 80th percentiles of the cross-sectional distribution of

book-to-market ratios as portfolio breakpoints. Next, within each book-to-market sorted portfolio,

we further sort the cross-section of firms on the basis of their capacity utilization rates in period

t− 1 using the same portfolio breakpoints. Finally, each portfolio is held for one period, at which

point in time all portfolios are rebalanced.

The table shows that the capacity utilization premium remains almost unchanged at about

6% to 7% per annum after controlling for differences in book-to-market ratios across firms. This
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Table OA.5.3: A model with aggregate investment efficiency shocks: univariate spreads

Panel A: Utilization premium Panel B: B/M spread
Portfolio SIGNs = 1 SIGNs = −1 SIGNs = 1 SIGNs = −1

Low (L) 7.80 7.60 3.35 3.51
Medium 3.99 3.84 3.53 3.56
High (H) 1.40 1.08 7.17 6.56

Spread 6.40 6.52 3.82 3.05

The table reports the average annual value-weighted returns of portfolios sorted on capacity utilization rates (Panel A)
and book-to-market ratios (Panel B), as implied by the model with investment efficiency shocks. As in the empirical
analysis, a firm is sorted into the high (low) utilization portfolio if its level of capacity utilization is above (below) the
90th (10th) percentile of the cross-sectional distribution of capacity utilization rates in the previous period. Similarly,
a firm is sorted into the high (low) book-to-market portfolio if book-to-market ratio is above (below) the 90th (10th)
percentile of the cross-sectional distribution of book-to-market ratios in the previous period. The columns SIGNs = 1
(SIGNs = −1) refer to the cases in which the market price of risk of the aggregate investment efficiency shocks is
positive (negative).

distinction between the value and utilization spreads in this two-shock model is quantitatively

more pronounced than the same distinction between these spreads in the single-shock model. This

is because the sort on capacity utilization in the two-shock model is akin to a sort on each firm’s

exposure to aggregate productivity shocks, while the sort on book-to-market ratios is akin to a sort

on each firm’s exposure to investment efficiency shocks.

Table OA.5.4: A model with aggregate investment efficiency shocks: double sorts

Utilization premium within B/M portfolios

Low CU Medium CU High CU Spread (L-H)

Low B/M 6.61 3.17 0.33 6.28

Medium B/M 7.35 3.27 0.18 7.19

High B/M 10.48 5.72 2.78 7.70

The table shows the returns obtained from a conditional portfolio double sort procedure implied by the model with

investment efficiency shocks. Specifically, the control variable, or the first dimension sorting variable, is a firm’s

book-to-market ratio, and the second dimension sorting variable is the capacity utilization rate. The portfolios

are constructed as follows. First, in each period t, firms are first sorted into three portfolios on the basis of the

cross-sectional distribution of the control variable in period t − 1. Here, we use the 20th and 80th percentiles of the

cross-sectional distribution as portfolio breakpoints. Next, within each portfolio, firms are further sorted into three

additional portfolios on the basis of the second stage sorting variable in period t − 1. Here, we once again use the

20th and 80th percentiles of the cross-sectional distribution of this variable as portfolio breakpoints. This procedure

produces nine portfolios that are held for one period, at which point in time all portfolios are rebalanced.

Projection evidence. To further highlight the distinction between the two spreads we project

the utilization premium onto the value premium via the following time-series regression

Utilization premiumt = α+ βB/M spreadt + εt. (OA.5.9)

If the utilization premium is merely a linear transformation of the value premium (i.e., if both

spreads are linearly driven by the same fundamentals), then the constant in this regression will be

zero. In contrast, the results from a population-sample simulation show that α in the regression

above is 4.90% per annum, an economically sizable quantity. This alpha is consistent with the
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empirical counterpart of this estimate that is 5.11% per annum (see Panel A of Table OA.3.20).

OA.5.2 A model with time-varying firm-level markups

Firm-level TFP is a combination of (i) technology, (ii) markups, and (iii) utilization. Our

benchmark model is somewhat silent on the underpinnings of this decomposition. However, the

empirical analyses in Section OA.3.6 suggest that the distinction between the TFP premium and

the utilization premium originates from the fact that the former spread reflects a sort on the first

two components of TFP (technology and markups) while the latter spread reflects a sort on the

third component of TFP (utilization).

To mirror this type of result in the model, we introduce markups to the two-shock model

described in Section OA.5.1. Because the model is a partial equilibrium, we cannot directly model

monopolistic competition to generate endogenous markups. Therefore, we assume that markups

fluctuate exogenously. These fluctuations may reflect time-varying degrees of price adjustment

(menu) costs or substitutability between the firm’s product and competitors products. Specifically,

we introduce these time-varying markups by replacing equation (4) with

Yi,t = exp(xt + zi,t)
[
u
(θαk·ξ)
i,t + µξ

i,t

] 1
ξ
KθαK

i,t LθαL
i,t , (OA.5.10)

where the markup process µi,t follows the dynamics

µi,t+1 = ρµµi,t + εµi,t+1, where εµt+1
i.i.d.∼ N

(
0, σ2

µ

)
. (OA.5.11)

To keep the setup generic, the augmented production function in equation (OA.5.10) introduces

a constant elasticity of substitution (CES) aggregator in which ξ represents the elasticity of sub-

stitution between utilization and markups for output. We model the augmented output function

in this way for two reasons. First, to emphasize that utilization is a factor of production that

is related to the intensity of capital usage while markups simply induce a wedge between price

and marginal cost, we raise ui,t but not µi,t to the power of αk. This means that markups exist

even if the firm relies entirely on labor to produce output (i.e., if the share of capital in output

αk → 0). Second, setting σ2
µ in equation (OA.5.11) to zero reduces the augmented output function

in equation (OA.5.10) to our baseline production function in equation (4). Thus, this augmented

production function nests our baseline production function.

Since our goal is to numerically demonstrate that markups further boost the independence

between the utilization premium and the productivity premium, we set the dynamics of the firm-

level markup process µi,t to follow an autoregressive progress with σµ = 0.012, and ρµ = 0.48.

This suggests that markups are moderately persistent (in line with Basu et al. (2006)), but not

very volatile (i.e., the volatility of firm-level technology shocks is much larger the volatility of

markup shocks). To make the quantitative distinction the starkest, we let ξ → 1 so that the output

function is the simple linear aggregation of the effects of utilization and markups. In particular,

when ξ → 1, the first-order condition for utilization in unchanged compared to equation (OA.5.7).

Since ∂Yi,t/∂ui,t is independent of µi,t, the firm’s choice of utilization does not depend on the current

markup. However, as ∂Yi,t/∂Ki,t depends on µi,t, firms’ investment policies depend on markups

and technology via the Euler equation for investment. We solve this augmented model using the

same method as that described in Section OA.5.1.

Estimating firm-level TFP. Before evaluating the degree to which the utilization and pro-

ductivity premia are related, we estimate firm-level TFP in the model. We do this in a similar
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fashion to the empirical approach of Imrohoroglu and Tuzel (2014). While Imrohoroglu and Tuzel

(2014) apply the Olley and Pakes (1996) estimator to elicit the firm-specific component of produc-

tivity, we employ a simplified OLS-based estimator since our production-based model is stripped of

many of the underlying identification issues that the Olley and Pakes (1996) estimator is designed

to overcome. For instance, there are no entry and exit decisions in our setup so we do not need to

account for the probability that a firm survives until the next period. As such, we elicit firm-level

TFP as the residual from the following panel regression estimated using model-simulated data:

ln (Yi,t) = δt + βK ln (Ki,t) + βL ln (Li,t) + ϵi,t. (OA.5.12)

Here, Yi,t represents the output of firm i, Ki,t represents the firm’s (predetermined) capital stock,

and Li,t represents the firm’s labor at time t, respectively. δt is a time fixed effect that subsume the

effects of aggregate productivity shocks that hit all firms at the same time. By mapping equation

(OA.5.10) to projection (OA.5.12), the residual ϵi,t captures technology (zi,t), markup (µi,t), and

endogenous utilization (ui,t).

Distinction between the utilization and productivity premia. As described above,

a firm’s choice of utilization is (i) independent of the degree of investment efficiency st (whereas

the firm’s investment decision depends on these shocks) and (ii) independent of markups. This

creates two differences between the utilization and TFP premia. First, even without markups (i.e.,

if σµ = 0), low TFP firms disinvest more and consequently face larger exposure to st shocks. In

contrast, the choice of utilization is independent of these st shocks. Second, with markups (i.e., if

σµ > 0), firm-level TFP is a combination of zi,t and µi,t, while utilization depends only on zi,t. This

creates another separation: controlling for TFP, the utilization premium in the model is driven

by technology and capital, while controlling for utilization, the TFP premium is mostly driven by

markups. As each state variable affects the conditional exposure of firms to priced shocks, the

model produces a sufficient amount of dispersion in the conditional betas of the TFP-sorted versus

the utilization-sorted portfolios. In the extreme case, a low utilization firm can also be a high

markup firm, rendering the firm to have high TFP in spite of having a low utilization rate. Thus,

a low utilization firm is not necessarily synonymous with a low productivity firm.

Before showing the distinction between the TFP and utilization premia, we first verify that this

model produces a sizable TFP spread. To do this, we construct the TFP premium by sorting the

cross-section of model-implied firms on their values of ϵi,t from equation (OA.5.12), which captures

the firm-level productivity in the model. In line with the results in Imrohoroglu and Tuzel (2014),

we find that the low (high) productivity portfolio earns an average annual return of 5.87% (0.11%),

resulting in a model-implied productivity premium of 5.76% per annum.

To show that the utilization premium is quantitatively distinct from the productivity premium

we first conduct a portfolio double sort using model-simulated returns. The first stage of this

procedure sorts the cross-section of model-implied firms at each time t into three portfolios on the

basis of firm-level productivity at time t − 1. Here, we use the 20th and 80th percentiles of the

cross-sectional distribution of firm-level productivity to form these portfolios. The second stage

of this procedure then constructs the utilization premium within each of the productivity-sorted

portfolios using the same percentiles of the cross-sectional distribution of utilization rates at time

t− 1. We hold each portfolio for one period, at which point in time all portfolios are rebalanced.

The results of this double sort procedure are reported in Table OA.5.5. Panel A of the table

implements these double sorts in the model that excludes firm-specific markups (i.e., using the
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model from Section OA.5.1 in which σµ = 0). We obtain an economically small but distinct

utilization premium within each productivity-sorted portfolio. That is, controlling for firm-level

productivity in the model without markups results in a utilization premium of about 1.5% per

annum. As mentioned above, the two-shock model in Section OA.5.1 produces a utilization premium

that is distinct from spreads that are related to investment policies, including TFP.

Table OA.5.5: Double sorts controlling for TFP: A model with and without markups

Panel A: Including markups

Low CU Medium CU High CU Spread (L-H)

Low TFP 10.27 8.01 6.16 4.11

Medium TFP 5.60 3.44 1.44 4.16

High TFP 2.72 0.77 -1.04 3.76

Panel B: Excluding markups

Low CU Medium CU High CU Spread (L-H)

Low TFP 1.31 0.21 -0.58 1.88

Medium TFP 4.65 3.49 2.96 1.69

High TFP 9.41 8.58 9.12 0.28

The table reports the results from a double sort procedure within a model that features investment efficiency shocks,

and either includes time-varying markups (Panel A) or excludes these markups (Panel B). In each panel, we first sort

the cross-section of model-implied firms at each time t into three portfolios on the basis of firm-level productivity

at time t − 1, estimated using equation (OA.5.12). Here, we use the 20th and 80th percentiles of the cross-sectional

distribution of firm-level productivity (TFP) to form these portfolios. Next, we construct the utilization premium

within each of the three productivity-sorted portfolios by further sorting the cross-section of firms into three portfolios

on the basis of their capacity utilization rates at time t− 1. Here, we one again use the same percentiles of the cross-

sectional distribution of utilization rates as portfolio breakpoints. This procedure produces nine portfolios that are

held for one period, at which point in time all portfolios are rebalanced.

Moreover, Panel B of Table OA.5.5 shows that adding firm-specific markups to the model

significantly boosts the distinction between the utilization and TFP premia. Including markups in

the model results in a utilization premium of around 4% per annum even when we condition on

firm-level productivity. This highlights a significant degree of distinction between the two spreads.

Lastly, in this extended model, the unconditional utilization premium is above 6% (similar to

the former subsection). Projecting the model-implied utilization premium on the model-implied

productivity premium through a time-series regression similar to equation (OA.5.9) results in an

alpha that is very close to the unconditional spread of about 6%. This model-implied alpha is in

line with the empirical estimate of the same alpha reported in Panel A of Table OA.3.20. This

time-series approach once again affirms the takeaways from the portfolio double sorts and Fama

and MacBeth (1973) regressions: the utilization and productivity premia are distinct spreads.

OA.5.3 A model with depreciation shocks

We pursue an extension of our benchmark model motivated by the empirical evidence in Section

OA.7.1. Specifically, while our baseline model assumes that depreciation rates correlate positively

with utilization rates (recall equation (8)), Table OA.7.1 shows that these two quantities comove

together, but not perfectly. As a result, we modify equation (8) to also feature an exogenous shock
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to the depreciation rate. This implies that a firm’s depreciation rate becomes a combination of (i)

its choice of utilization rate, and (ii) a stochastic shock. This augmented depreciation function is

δ(ui,t) = δk + δu

[
u1+λ
i,t − 1

1 + λ

]
+ dt, where dt+1 = ρddt + σdε

δ
t+1, (OA.5.13)

and εδt is a standard normal i.i.d. shock to depreciation. Since depreciation shocks can be corre-

lated with aggregate productivity, we consider two extreme cases: shocks that are both perfectly

positively and perfectly negatively correlated with aggregate productivity.

We calibrate ρd and σd such that the largest value of |dt| in a discrete state space with a

truncated support (i.e., two standard deviations from zero) causes the depreciation rate to change

by up to 2.58%. As the unconditional depreciation rate in the model (δk) is 8%, the impact of the

largest depreciation shock causes a firm’s depreciation rate to change by roughly 33% compared

to its unconditional mean. Given the large magnitude of these calibrated depreciation shocks, this

exercises places an upper bound on the effect that these shocks can have on the utilization premium.

Table OA.5.6 shows that depreciation shocks that are perfectly positively (negatively) correlated

with aggregate productivity decrease (increase) the model-implied utilization spread by 0.60% per

annum. In either the case the model-implied spread, which is based on industry-level portfolio

returns, falls within the confidence interval of the utilization premium in the data. Since the true

correlation between depreciation and utilization rates is unknown, but must necessarily fall within

the range of correlations we consider (i.e., [−1,+1]), exogenous shocks to depreciation rates do not

materially impact the magnitude of the utilization premium.

Table OA.5.6: Capacity utilization spread: sensitivity to depreciation shocks

Positively correlated εδi,t Negatively correlated εδi,t
Portfolio E

[
RCU

]
β E

[
RCU

]
β

Low (L) 7.70 1.06 10.21 1.64

Medium 5.94 1.01 7.79 1.51

High (H) 4.38 0.96 5.74 1.38

Spread 3.32 0.09 4.46 0.26

(L-H)

The table reports the average model-implied annual value-weighted returns of portfolios sorted on capacity utilization,

as well as the exposure of each utilization portfolio to market returns (β), at the industry level. As in the empirical

analysis, an industry is sorted into the high (low) utilization portfolio if its level of capacity utilization is above (below)

the 90th (10th) percentile of the cross-sectional distribution of capacity utilization rates in the previous period. Here,

the model economy is identical to the benchmark case and calibration with one exception: the depreciation rate of

each firm is subject to an exogenous shock, as represented by equation (OA.5.13). In the left (right) portion of the

table these depreciation rate shocks are perfectly positively (negative) correlated with the aggregate productivity

shocks. Industry-level returns are simulated using the procedure described in Section 3.1. Population moments are

obtained from one simulation of 50 industries for 40,000 periods (years).

OA.6 Model implications for macro-finance modeling

The implications of flexible utilization for asset prices span beyond the utilization premium.

We highlight the roles of flexible utilization for jointly targeting cross-sectional risk premia and
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investment moments in the presence of real options while relying on a parsimonious adjustment

cost specification. We first show the failures of the model without utilization to target asset-pricing

and production moments. We then explain how utilization provides a solution to these misses.

We demonstrate that flexible utilization permits us to target key moments with a lower degree of

adjustment costs vis-à-vis a model with fixed utilization.

OA.6.1 A fixed utilization model: the failures

The benchmark model’s success in jointly fitting (i) the volatility and skewness of investment,

both across time and across firms, and (ii) risk premia, crucially hinges on variable capacity utiliza-

tion rates. To illustrate this point, row (1) of Table 9 shows model-implied moments in an economy

without flexible utilization (i.e., λ → ∞).

With fixed utilization, the distribution of investment rates exhibits far less variability and

asymmetry compared to the data both in the time-series and the cross-section. The time-series

skewness of firm-level investment turns to -0.27, at odds with its empirical sign and magnitude of

0.67. Investment’s time-series volatility drops to only 11%, and its autocorrelation becomes slightly

too high. Cross-sectional moments also become severely distorted. The dispersion of investment

rates is about a half of its empirical counterpart (7% in the model versus 16% in the data). The

cross-sectional skewness of investment rates is merely 0.07 in the model, whereas it is much higher

in the data (about 1.9). The model-implied value and investment spreads are also about 1% per

annum smaller in this model than the data.

The fixed utilization model fails to capture the aforementioned moments since (1) the fixed

adjustment cost makes disinvestment a real option, and (2) without flexible utilization, a firm’s

only way to respond to a negative productivity shock is by exercising this option. As discussed in

Section 2.2, if a drop in productivity at time t is not extremely severe, then a “wait and see” effect

tends to dominate. Thus, declines in productivity typically lead to periods of investment-policy

inaction in which many firms do not alter their capital stock. Each waiting firm j sets its investment

rate, ij,τ , to the constant depreciation rate of δk for all τ ∈ [t, t + t̂), where t̂ is the ending time

of the endogenous inaction period. Since a mass of waiting firms are clustered around the center

of investment’s distribution (i.e., around δk), investment’s dispersion and cross-sectional skewness

both decrease.

Furthermore, if productivity remains persistently low, then at time t + t̂ waiting firms pass a

tipping point in which they are overly burdened with unproductive capital and choose to disinvest

this capital sharply. This implies that ij,t+t̂ << δk.
37 Thus, these periods of inaction are often

followed by negative investment spikes, producing the negative skewness of firm-level investment

that is inconsistent with the data.38

The distorted distribution of investment rates in the model with fixed utilization also has an

37Put differently, when firms are close to the disinvestment threshold, then the investment policy is locally concave
and the expected value of investment becomes negative.

38Importantly, the counterfactuals in the model with fixed utilization cannot be remedied simply via the aggregation
level. As many real options operate at the plant level, one can argue that a collection of production units in the
model comprise one firm. Aggregation of many units into a single firm does indeed smooth model-implied investment
rates by shrinking periods of investment inaction, and lowering the size of disinvestment jumps. However, these
model-implied moments remain unaligned with the data. We verify this in untabulated simulation by aggregating
100 production units into a firm. The resulting model-implied volatility of investment is smaller than the data. While
the skewness of investment turns positive, this quantity is close to zero (remaining significantly lower than the data).
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adverse impact on risk premia. Because investment’s distribution features too little dispersion

and asymmetry, there is too little heterogeneity between firms’ risk exposures. Sorting firms into

portfolios based on investment (or valuation ratios) implies that both the top and bottom quintiles

(tails) contain fewer extreme outcomes compared to the benchmark with flexible utilization. As

differences in cross-sectional risk premia are fundamentally driven by heterogeneity in investment,

cross-sectional spreads get smaller with fixed utilization.

OA.6.2 Flexible utilization: a solution

Our benchmark model with flexible utilization overcomes the counterfactuals outlined in Section

OA.6.1 by making the depreciation rate endogenously stochastic. This improved model fit is high-

lighted in row (2) of Table 9 by showing model-implied moments under the benchmark value of λ.

When firms can choose utilization, they have an extra mechanism by which to scale down produc-

tion in response to adverse productivity shocks, even as they “wait and see” if productivity recovers.

That is, firms can respond to moderate drops in productivity by utilizing their existing machines

less intensively rather than selling machines. As underutilized capital depreciates slower, more

capital is preserved for more productive future periods (i.e., δ(uj,τ ) < δk if uj,τ < 1 ∀τ ∈ [t, t+ t̂)).

Lower utilization reduces the natural investment rate needed to maintain the current capital

stock. Thus, even as firms wait to sell capital, the investment required to maintain existing ma-

chines, ij,τ = δ(uj,τ ), becomes endogenously stochastic. This time-varying depreciation eliminates

the long periods of constant investment. The time-series volatility of firm-level investment rises,

and the cross-sectional dispersion of investment increases. To see the latter, note that firms’ utiliza-

tion rates depend on idiosyncratic productivity shocks. Since these shocks differ between waiting

firms, uj,τ ̸= uk,τ ⇒ ij,τ ̸= ik,τ for firms j and k.

Moreover, the positive correlation between productivity and utilization also implies that firms

opt to raise utilization in times of high productivity. Utilizing capital more intensively in good

times raises both depreciation and the natural rate of investment (i.e., δ(uj,τ ) > δk), and means

that larger investments are needed to expand capacity in future periods. To see this, suppose

that at time τ a firm wants to expand capacity by δkK. With fixed utilization, the required

investment rate is iτ = 2δk. However, with flexible utilization, the required investment rate rises

to iτ = δ(uj,τ ) + δk > 2δk. Since investment becomes more procyclical, its time-series and cross-

sectional skewness rise and turn positive (in line with the data).

The increases in the skewness and dispersion of investment under flexible utilization also boost

risk premia, as seen by comparing the value premium between rows (2) and (1) of Table 9. A

larger value premium under flexible utilization can be attributed to the fact that the cross-section

of investment rates is more dispersed and almost 17 times as skewed in the model with flexible

utilization.

Greater dispersion in investment leads to more heterogeneity in risk exposures to aggregate

productivity, which increases return spreads.39

39The increase in the cross-sectional skewness of investment also has an impact on the value premium. With fixed
utilization, and symmetric cross-sectional distribution, the portfolio of growth firms (bottom 20% of book-to-market)
includes both firms with very high and moderately high investment rates (or Tobin’s Q). With flexible utilization, and
asymmetric cross-sectional distribution, the right tail of investment’s distribution becomes thicker, and the portfolio
of growth firms includes firms with only very high investment rates. As these firms expand capacity significantly
(suggesting a much higher Q) precisely when the price of risk is high (bad states), their skewed investment behavior
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More generally, as shown in rows (3) to (6) of Panel A in Table 9, the value of λ has a substantial

quantitative impact on matching the data. As utilization becomes more flexible (i.e., λ decreases),

the time-series/cross-sectional skewness and volatility of investment rise, the autocorrelation of

investment slightly declines, and risk premia increase as well. This generally moves each moment

towards its empirical counterpart when compared to the case of λ → ∞. In particular, row (6)

shows that when utilization becomes less flexible (i.e., λ is finite but high), investment’s skewness

and dispersion are too low. Rows (4) and (5) show that our results are only mildly affected by

small perturbations of the benchmark value of λ. However, utilization cannot be overly flexible.

When λ is very low, as in row (3), the volatility of utilization exceeds the 95% confidence interval

of this quantity in the data.

OA.6.3 Required adjustment costs under flexible utilization

Without flexible utilization, the problem of matching investment’s moments with the data is not

simply alleviated by recalibrating the model. In this section we show that flexible utilization can

reduce the magnitude of exogenous adjustment cost parameters required to target investment and

risk premia jointly. We illustrate this role of utilization by (i) perturbing the capital adjustment

cost parameter, and (ii) generalizing the adjustment cost function in a model without utilization.

Perturbing adjustment costs. In rows (7) to (10) of Panel B in Table 9 we alter the

quadratic adjustment cost while keeping utilization fixed. Rows (7) and (8) consider the case of

lower frictions compared to the benchmark. Sufficiently lower friction (row (7) can help turn the

time-series skewness of investment to a positive value, but the cross-sectional skewness of investment

is still too small. Lower frictions also cause risk premia to fall. The value premium, which is already

too low in the model with fixed utilization, falls in row (7) to almost half of its empirical magnitude.

The diminished value premium in the model with fixed utilization can be boosted by increasing

the quadratic capital adjustment cost. With higher adjustment costs, shocks are absorbed in asset

prices rather than investment quantities. We demonstrate this in rows (9) and (10). We search for

an adjustment cost parameter ϕ to match the value premium in the model with fixed utilization.

Our structural search suggests that ϕ needs to be around 3.00 to match this spread (see row (10)).

While this parameter is broadly consistent with existing literature, this value is double the value of ϕ

under our benchmark model with flexible utilization. Moreover, doubling ϕ simultaneously distorts

investment’s distribution. Investment’s dispersion becomes a quarter of its empirical magnitude.

The time-series skewness of investment becomes even more counterfactually negative.40

Flexible utilization provides a channel that addresses the aforementioned concerns. Row (2) of

Table 9 shows that flexible utilization allows our baseline model to feature adjustment costs that

provides an excellent hedge against bad states. This decreases the risk premium of the growth portfolio, and increases
the magnitude of the value premium.

40In untabulated results, we further verify that under fixed utilization, the value premium cannot be targeted
successfully in the model (jointly with investment’s moments) by changing the fixed cost f . Specifically, we find
that lowering the fixed cost f causes investment’s skewness to rise and move closer to the data. However, even
in the extreme case of f = 0, the cross-sectional skewness of investment is only a half of its empirical magnitude.
Moreover, lowering f decreases the magnitude of the value premium (e.g., when f = 0.01, the implied value premium
is merely 2.7%). Similarly, we find that while raising the fixed cost f to 0.06 allows us to obtain a value premium
of 3.2% (roughly consistent with the data), this causes the model’s investment mismatch to become even more
severe. The time-series and cross-sectional skewness of investment become counterfactually negative (about -0.75),
and investment’s volatility falls to 10%.
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are smaller than those required with fixed utilization. These smaller costs are sufficient to simul-

taneously produce sizable risk premia spreads, including many periods of depressed investment.41

This happens because of the following key mechanisms.

The mechanism. The first mechanism is related to the impact of lower utilization on observed

investment rates. For a given quadratic adjustment cost parameter, flexible utilization implies more

observed disinvestment while keeping the amount of friction (risk) the same. To see this, suppose a

firm wishes to drop its capital stock by δkK. With fixed utilization, the firm chooses an investment

rate of i = 0, and the quadratic cost is proportional to δ2k. However, with flexible utilization, a

drop in productivity triggers a drop in utilization, which in turn lowers the firm’s depreciation to

δ(ui,t) < δk. To shed δkK capital, the investment rate is set to the lower rate of i = −δk+δ(ui,t) < 0.

The quadratic cost will be unaltered, and remain proportional to (−δk + δ(ui,t) − δ(ui,t))
2 = δ2k.

Thus, in a model with flexible utilization, one may see more disinvestment without compromising

on the frictions that induce risk premia.

The second mechanism involves the changes in the cross-sectional distribution of investment

rates that are caused by flexible utilization. As we outline in Section OA.6.2, utilization makes the

cross-sectional distribution of investment more dispersed and skewed. By featuring more extreme

observations in the tails of investment’s distribution, one can obtain quantitatively large return

spreads with moderated values of adjustment costs.

The third mechanism is utilization’s ability to enhance payout cyclicality. Value firms have low

idiosyncratic productivity and high capital, and desire to reduce excess capital in bad states. With

fixed utilization, these firms are riskier because they need to pay large quadratic costs that reduce

their payoff precisely when aggregate productivity is low. With flexible utilization, these firms also

desire to lower utilization to conserve capital for future periods. The reduction in utilization implies

today’s output is even lower, contemporaneously with a bad aggregate state. Thus, the cyclicality

of output is larger, amplifying risk.

Alternative adjustment costs. A model with fixed utilization can potentially match the

aforementioned moments using a more elaborate adjustment cost function. Extra adjustment costs

may include piecewise quadratic and linear terms (e.g., Belo and Lin (2012)).

While it is hard to rule out the possibility of an admissible adjustment cost function, the

next subsection provides evidence that adjustment costs in the form of Cooper and Haltiwanger

(2006) are unlikely to reconcile risk premia alongside the time-series and cross-sectional moments

of investment. We augment the model to feature asymmetric quadratic and linear adjustment

costs. The downside quadratic (linear) coefficient is ten times (two to three times) larger than

the upside coefficient, in line with extant papers. We find that the asymmetric fixed cost has a

negligible effect on all moments. By contrast, when the quadratic adjustment cost is asymmetric,

and re-calibrated to successfully match the cross-sectional skewness of investment, the time-series

skewness and volatility of investment are much larger than the data, and return spreads are still

too low.

41Moreover, when utilization is flexible, this result is not very sensitive to small perturbations of ϕ. Rows (12)
and (13) of Table 9 show that when the quadratic adjustment cost (ϕ) slightly increases (decreases), the volatility of
investment drops (rises), the value premium slightly increases (decreases), but these moments are almost identical to
the benchmark in row (2). Row (14) shows that if ϕ is set to 3.00 (which is required in the case of fixed utilization),
then the implied value premium is almost 5%, about 1.5% above its value under fixed utilization. In this case, the
cross-sectional skewness of investment aligns very well with the data, but the cross-sectional dispersion is too low.
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OA.6.4 Alternative adjustment cost specification

We document that even if the capital adjustment cost function given by equation (9) is aug-

mented to include piecewise linear and quadratic terms, the model with fixed utilization is not

likely to match key investment-related moments, while generating high risk-premia spreads.

Consistent with the works of Cooper and Haltiwanger (2006), Belo and Lin (2012), and Belo

et al. (2014), among others, we generalize the adjustment cost function employed by our benchmark

analysis to include asymmetric linear and quadratic adjustment cost. Specifically, the adjustment

cost function we employ is given by

Gi,t =

[
ϕ+

2
(nii,t)

2 1{nii,t>0} +
ϕ−

2
(nii,t)

2 1{nii,t<0} + f+1{nii,t>0} + f−1{nii,t<0}

]
Ki,t. (OA.6.1)

Here, ni,t ≡ Ii,t
Ki,t

− δk denotes the net investment rate of firm i at time t, while the functions

denoted by 1{nii,t>0} (1{nii,t<0}) are indicator variables that take on a value of one when the firm

increases (reduces) its stock of capital. The adjustment parameter ϕ+ (ϕ−) capture the quadratic

adjustment cost of increasing (decreasing) capacity, while f+ (f−) captures the fixed adjustment

cost of increasing (decreasing) capacity. While our benchmark adjustment cost specification imposes

the constraints that ϕ+ = ϕ− and f+ = 0, we relax these constraints below and consider more

general specification in which ϕ+ ̸= ϕ− and f+ > 0.

The model in Zhang (2005) suggests the quadratic adjustment cost for investment is around

one tenth of the magnitude of that for disinvestment. Accordingly, we focus on the case that

ϕ+ = ϕ− × 1
10 . Likewise, the fixed cost of investment in Belo and Lin (2012) and Belo et al. (2014)

is approximately one third to one half of the magnitude of that for disinvestment. Consequently,

we consider the cases in which f+ = f−1 × 1
3 or f+ = f−1 × 1

2 . For completeness, we also consider

calibrations in which the ratios f+/f− or ϕ+/ϕ− differ from these prior studies.

Table OA.6.1 reports the model-implied time-series and cross-sectional moments of investment

rates, as well as the magnitude of cross-sectional risk premia, in a fixed-utilization model featuring

asymmetric capital adjustment costs. Rows (2) to (6) of the table consider calibrations in which

ϕ+ = ϕ− in equation (OA.6.1), identical to our baseline calibration reported in row (1), but f+ > 0.

We keep in f− at a positive value, consistent with the reason outlined in Section 2.1. By and large,

perturbing introducing an upside linear adjustment cost does not help to reconcile the data. For

instance, when f+ = f− × 1
2 in row (6) the dispersion and volatility of investment rates, as well as

the magnitudes of the risk premia, remain far lower than their counterparts in the data.

Rows (7) to (9) of the table keep f+ = 0 (identical to our baseline model) but allow for

asymmetry in the quadratic adjustment costs (i.e., ϕ+ ̸= ϕ−). Focusing on row (8), a calibration

in which ϕ+ = ϕ− × 1
10 , shows that this asymmetry can reconcile cross-sectional moments of

investment rates with the data (e.g., the cross-sectional skewness is about 1.8 in both the model

and the data). However, the same calibration fails to match the time-series moments of investment

rates and risk premia. Specifically, the model-implied time-series volatility (skewness) of investment

rates is almost twice (five times) as high as its empirical counterpart. Moreover, risk premia in this

model are too low compared to the data.

In rows (10) and (11) the adjustment cost function is calibrated to feature both asymmetric

linear and quadratic adjustment costs. Here, the degree of asymmetry follows the degrees of

asymmetry considered in the literature (see, e.g., Zhang (2005), Belo and Lin (2012), and Belo et al.
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(2014)). The results indicate that even with the most general form of the asymmetric adjustment

costs, the fixed-utilization model is only able to reconcile the cross-sectional moments at the expense

of not matching the time-series of investment and risk premia. For instance, row (10) is quite similar

to row (8) in terms of matches and mismatches.

To complement the above evidence, we also search for a value of ϕ− that is able to match the

value premium, similar to the exercise presented in Section OA.6.3. The search result yields two

conclusions that are almost identical to Section OA.6.3. First, even though we feature a more

elaborate adjustment cost, as in Cooper and Haltiwanger (2006), we still need to increase the

exogenous amount of capital friction compared to the flexible utilization model. We find that the

downside quadratic adjustment cost ϕ− has to be doubled. That is, a calibration in which ϕ− = 3,

ϕ+ = ϕ−/10 and f+ = f−/3 yields a value premium of 3.5%, which is close to the data. Second, this

higher value of ϕ− renders two prominent counterfactual moments for investment: the time-series

skewness of investment is much larger than the data (about 3.5), and the cross-sectional dispersion

is about a half of the data (about 0.08).

To conclude, the evidence points out that asymmetry in the linear cost has only a marginal

effect on the results, while asymmetry in ϕ helps only for the cross-section of investment. In par-

ticular, row (8) shows that without deviating from standard values of α, δk, or αl, a model with

fixed utilization and real options cannot match the data. Importantly, even if such calibration

was feasible, flexible utilization would still offer valuable merit: flexible utilization provides a way

to rely on a lower dimensional adjustment cost function and endogonize the implications of addi-

tional exogenous calibration parameters using a micro-founded margin. The only additional model

parameter needed to accommodate flexible utilization is λ.

OA.7 Utilization and depreciation: Empirical evidence

OA.7.1 Utilization and depreciation dynamics

Equation (8) suggests that firms’ depreciation rates should correlate positively with their uti-

lization rates. In this section we check this prediction and explore its implications for the accuracy

and the frequency of depreciation’s measurement.

We examine the relation between utilization and depreciation via the projection

∆δj,t = dj + du∆uj,t + dxXj,t + εj,t,

where j denotes an industry index, ∆δj,t is the log growth of industry j’s depreciation rate from

BEA, ∆uj,t is the log growth of industry j’s utilization rate, and Xj,t is a control variable. We

use the log growth of depreciation and utilization to reduce persistence in these variables, and to

account for a non-linear relation between the level of the two. All variables are standardized for the

ease of interpretation. The results of the projection are reported in Table OA.7.1. In columns (1)

and (2) of the table we run the projection without any controls. We show that the simple correlation

between log depreciation growth and log utilization growth is 30%, and that this correlation is not

affected by the inclusion of industry fixed effects.

Recent studies in production-based asset pricing show that BEA- and Compustat-implied de-

preciation rates are strikingly different. The use of one over the other can lead to economically

sizable differences in the distribution of gross investment rates (e.g., Clementi and Palazzo (2019);

Bai et al. (2019)). In line with these papers, columns (3) and (4) of Table OA.7.1 demonstrate the
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Table OA.6.1: Model-implied moments and asymmetric capital adjustment costs

Time-series Cross-sectional Risk premia

Row Model σTS (ik) STS (ik) ρ1 (ik) σCS (ik) SCS (ik) E
[
Rbm

]
E
[
Rik

]
Data 0.14 0.67 0.52 0.16 1.89 3.71 3.70

Baseline without utilization
(1) (λ → ∞) 0.11 -0.27 0.63 0.07 0.07 3.00 2.29

Unchanged ϕ and f+ > 0
(2) f+ = f− × 1

20
0.11 -0.20 0.62 0.07 0.13 2.99 2.12

(3) f+ = f− × 1
10

0.11 -0.14 0.61 0.07 0.19 2.99 2.03
(4) f+ = f− × 1

5
0.11 -0.03 0.60 0.07 0.27 2.99 1.88

(5) f+ = f− × 1
3

0.11 0.10 0.59 0.07 0.41 2.98 1.77
(6) f+ = f− × 1

2
0.11 0.24 0.57 0.07 0.57 2.97 1.65

Asymmetric ϕ and f+ = 0
(7) ϕ+ = ϕ− × 1

20
0.29 4.60 0.33 0.21 2.52 2.37 2.24

(8) ϕ+ = ϕ− × 1
10

0.23 3.41 0.42 0.17 1.81 2.54 2.28
(9) ϕ+ = ϕ− × 1

5
0.18 2.28 0.50 0.13 1.18 2.70 2.27

Asymmetric ϕ and f+ > 0
(10) f+ = f− × 1

3
, and 0.24 3.50 0.38 0.17 2.07 2.51 1.99

ϕ+ = ϕ− × 1
10

(11) f+ = f− × 1
2
, and 0.23 3.41 0.42 0.17 1.81 2.54 2.28

ϕ+ = ϕ− × 1
10

The table reports model-implied population moments related to the time-series and cross-section of investment rates,
as well as risk premia, under various calibrations of the model featuring an asymmetric capital adjustment cost
function. Specifically, the augmented adjustment cost function is

Gi,t =

[
ϕ+

2
(nii,t)

2 1{nii,t>0} +
ϕ−

2
(nii,t)

2 1{nii,t<0} + f+1{nii,t>0} + f−1{nii,t<0}

]
Ki,t,

where ni,t ≡ Ii,t
Ki,t

− δk represents the net investment rate of the firm, and the functions denoted by 1{nii,t>0}

(1{nii,t<0}) are indicator variables that take on a value of one when the firm increases (reduces) its capacity. Here, .

We consider various specifications of the function above, whereby we alter ϕ+ (f+) to either be unchanged relative
to the baseline model, or a fixed multiple of ϕ− (f−).The table reports the time-series volatility (σTS (ik)), skewness
(STS (ik)), and the first-order autocorrelation (ρ (ik)) of firm-level investment rates, as well as the cross-sectional
dispersion (σCS (ik)) and skewness (SCS (ik)) of investment rates. In addition, the table also reports the value
premium (E

[
Rbm

]
) and investment premium (E

[
Rik

]
) obtained by sorting the cross-section of model-implied returns

association with each calibration on book-to-market ratios and investment rates, respectively. These risk premia are
expressed as an annualized percentage. Each alternative calibration is identical to the benchmark calibration in all
ways except for the degree of asymmetry in the alternative adjustment cost function. All moments are based on a
simulations of 1,000 firms over 40,0000 periods (years). Finally, the top row of the table also reports the empirical
counterpart of each moment.

discrepancy between these two depreciation measures. We set Xj,t to be the log growth of industry

j’s Compustat-based depreciation rate, and restrict du to zero. The correlation between the growth

of these depreciation measures is only 3%.42

In columns (5) and (6) we do not restrict du to be zero. First, the positive correlation between

BEA-implied depreciation growth and utilization growth remains positive and sizable when con-

trolling for Compustat-implied depreciation. Second, the (partial) correlation between the growth

rates of BEA- and Compustat-implied depreciation increases to 14%. Thus, utilization narrows

the wedge between these two measures. While measurement error may exist in both measures, the

fact that the correlation between the two increases when controlling for utilization suggests that

42We describe the measurement of the these depreciation rates in Section OA.1 of the Online Appendix.
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Table OA.7.1: Empirical relation between capacity utilization and depreciation rates

(1) (2) (3) (4) (5) (6)

βUTIL 0.30 0.30 0.28 0.28
(3.11) (3.14) (2.80) (2.83)

βCOMP 0.03 0.03 0.13 0.14
(3.50) (3.53) (3.54) (3.58)

Industry FE No Yes No Yes No Yes
R2 0.09 0.09 0.02 0.02 0.10 0.10

The table reports the empirical relation between the industry-level capacity utilization rate, industry-level depre-
ciation rate from the BEA, and industry-level depreciation rate from Compustat. In each specification considered
in the table we run projections of the log-growth rate of BEA-implied depreciation on the log-growth rates of ca-
pacity utilization and Compustat-implied depreciation rates, and standardize all variables for ease of interpretation.
Columns (1), (3), and (5) of the table estimated pooled-OLS regressions, whereas columns (2), (4), and (6) of the
table estimate panel regressions including industry fixed effects. t-statistics, reported in parentheses, and computed
using standard errors clustered at the industry level. Finally, the time span underlying the regressions is from January
1967 to December 2015.

utilization can be used to accurately filter the true depreciation rate. We briefly illustrate this

point in the next subsection.

OA.7.2 High-frequency depreciation based on utilization data

As utilization data is available at the monthly frequency, the utilization-implied depreciation

rate we propose is computed at a higher frequency than depreciation rates implied by either BEA

or Compustat. First, to be consistent with the model, we adjust each industry’s utilization rate

to have a mean of one. Then, for each industry j, we obtain a utilization-implied depreciation

rate, δ(uj), by applying equation (8) to the industry’s utilization data. Here, we use the model

parameters in Table 6. Second, we average these depreciation rates across all industries to obtain an

aggregate utilization-implied depreciation rate, δ(uagg). Third, we adjust δ(uagg) to share the same

trend as the aggregate depreciation rate from the BEA. We do this by combining the business-cycle

component of δ(uagg) with the stochastic trend component of the BEA’s aggregate depreciation

rate.43 We obtain the components of each time-series using the Hodrick and Prescott (1997) filter.

In Figure OA.7.1 we plot the monthly time-series of δ(uagg) alongside the trend of the BEA’s

aggregate depreciation rate. By construction, the two time-series share the same trend, but δ(uagg)

shows high-frequency business-cycle fluctuations around this common trend. These fluctuations

could be important as they amplify the volatility of gross investment rates and can help to reconcile

the dynamics of BEA- and Compustat-implied depreciation rates.

43The third step is optional and meant to ensure both series follow the same trend. An alternative measure of the
utilization-implied depreciation rate involves only the first two steps, with similar results.
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Figure OA.7.1: Utilization-based high-frequency depreciation rate

The figure shows a high-frequency measure of the aggregate depreciation rate. The figure reports the time series of

the high-frequency depreciation rate from 1985, the beginning of the Great Moderation, to 2015.

OA.8 Supplemental tables and figures

Table OA.8.1: Model-implied CAPM alpha

Portfolio
[
RCU

]
αCAPM

Low (L) 8.89 [4.71,15.16] 2.84 [0.78,4.88]

Medium 6.77 [3.40,12.37] 0.98 [0.47,1.49]

High (H) 4.96 [0.51,11.00] -0.61 [-3.15,1.94]

Spread 3.93 [0.67,7.45] 3.45 [-0.24,6.83]

(L-H)

The table reports the average annual value-weighted returns and CAPM alphas (αCAPM ) of portfolios sorted on

capacity utilization at the industry-level across short-sample simulations of our model economy. As in the empirical

analysis, an industry is sorted into the high (low) utilization portfolio if its level of capacity utilization is above

(below) the 90th (10th) percentile of the cross-sectional distribution of capacity utilization rates in the previous

period. Industry-level returns are simulated using the procedure described in Section 3.1, and short-sample moments

are obtained by averaging moments across 500 simulations of 50 industries for 50 periods (years). Finally, square

brackets report the 90% confidence interval related to each moment across the 500 Monte Carlo simulations of the

economy.
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Figure OA.8.1: Model-implied investment policy
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The figure shows the optimal investment rate policy (I/K) as a function of idiosyncratic productivity (z). Capital

and aggregate productivity are set at their stochastic steady-state values, and we let z varying between two standard

deviations of its mean value. We consider the I/K policy under three versions of our model: (1) The benchmark

model (solid blue line), (2) the model without fixed costs (i.e., f = 0) (the dashed red line), and (3) the model with

fixed utilization (i.e., λ → +∞).
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